Advertisement

Global Optimization: Software, Test Problems, and Applications

  • János D. Pintér
Part of the Nonconvex Optimization and Its Applications book series (NOIA, volume 62)

Abstract

This chapter provides a concise review of the most prominent global optimization (GO) strategies currently available. This is followed by a discussion of GO software, test problems and several important types of applications, with additional pointers. The exposition is concentrated around topics related to continuous GO, although in certain aspects it is also pertinent to analogous issues in combinatorial optimization.

Keywords

Global Optimization Test Problem Search Point Stochastic Programming Model Unique Global Solution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Argonne National Laboratories (1993). MINPACK-2 Test Problem Collection. See also the accompanying notes titled `Large-scale optimization: Model problems’, by B.M. Averick and J.J. More. http://www-c.mcs.anl.gov/home/more/tprobs/html.Google Scholar
  2. Atkinson, A., Bogacka, B., and Zhigljaysky, A.A., editors (2001). Optimum Design 2000. Kluwer Academic Publishers, Dordrecht/Boston/London.MATHGoogle Scholar
  3. Beck, M.B. (1985). Water Quality Management: A Review of the Development and Application of Mathematical Models. Springer-Verlag, Berlin/Heidelberg/New York.Google Scholar
  4. Beck, M.B., editor (1987). Systems Analysis in Water Quality Management. Pergamon Press, Oxford.Google Scholar
  5. Benson, H.P. (1995). Concave minimization: theory, applications, and algorithms. In Horst, R. and Pardalos, P.M., editors, Handbook of Global Optimization, pages 43–148. Kluwer Academic Publishers, Dordrecht/Boston/London.Google Scholar
  6. Benson, H.P. and Sun, E. (2000). LGO–Versatile tool for global optimization. OR/MS Today, 27 (5): 52–55.Google Scholar
  7. Boender, C.G.E. and Romeijn, H.E. (1995). Stochastic methods. In Horst, R. and Pardalos, P.M., editors, Handbook of Global Optimization, pages 829–869. Kluwer Academic Publishers, Dordrecht/Boston/London.Google Scholar
  8. Bomze, I.M., Csendes, T., Horst, R., and Pardalos, P.M., editors (1997). Developments in Global Optimization. Kluwer Academic Publishers, Dordrecht/Boston/London.MATHGoogle Scholar
  9. Bracken, J. and McCormick, G.P. (1968). Selected Applications of Nonlinear Programming. John Wiley and Sons, New York.MATHGoogle Scholar
  10. Brooke, A., Kendrick, D., and Meeraus, A. (1988). GAMS: A User’s Guide. The Scientific Press, Redwood City, California. Revised versions are available from the GAMS Corporation.Google Scholar
  11. Casti, J.L. (1990). Searching for Certainty. Morrow and Co., New York.Google Scholar
  12. Colville, A.R. (1968). A comparative study of nonlinear programming codes. Technical Report No. 320–2949, IBM Scientific Center, New York.Google Scholar
  13. Conway, J.H. and Sloane, N.J.A. (1988). Sphere Packings, Lattices and Groups. Springer-Verlag, Berlin/Heidelberg/New York, 2nd edition.MATHCrossRefGoogle Scholar
  14. Corliss, G.F. and Kearfott, R.B. (1999). Rigorous global search: Industrial applications. In Csendes, T., editor, Developments in Reliable Computing, pages 1–16. Kluwer Academic Publishers, Dordrecht/Boston/London.CrossRefGoogle Scholar
  15. De Leone, R., Murli, A., Pardalos, P.M., and Toraldo, G., editors (1998). High Performance Software for Nonlinear Optimization. Kluwer Academic Publishers, Dordrecht/Boston/London.Google Scholar
  16. Dean, P.M. (1995). Molecular Similarity in Drug Design. Chapman and Hall, London.CrossRefGoogle Scholar
  17. Dembo, R.S. (1974). A set of geometric programming test problems and their solutions. Working paper, Department of Management Science, University of Waterloo, Waterloo, Ontario, Canada.Google Scholar
  18. Diener, I. (1995). Trajectory methods in global optimization. In Horst, R. and Pardalos, P.M., editors, Handbook of Global Optimization, pages 649–668. Kluwer Academic Publishers, Dordrecht/Boston/London.Google Scholar
  19. Dill, K.A., Phillips, A.T., and Rosen, J.B. (1997). Molecular structure prediction by global optimization. In Bomze, I.M., Csendes, T., Horst, R., and Pardalos, P.M., editors, Developments in Global Optimization, pages 217–234. Kluwer Academic Publishers, Dordrecht/Boston/London.CrossRefGoogle Scholar
  20. Dixon, L.C.W. and Szegb, G.P., editors (1975, 1978 ). Towards Global Optimisation, Volumes 1–2. North-Holland, Amsterdam, The Netherlands.Google Scholar
  21. Dorfman, R., Jacoby, H.D., and Thomas, H.A., editors (1974). Models for Managing Regional Water Quality. Harvard University Press, Cambridge, Massachusetts.Google Scholar
  22. Eason, E.D. and Fenton, R.G. (1974). A comparison of numerical optimization methods for engineering design. ASME J. Eng. Ind. Ser. B, 96 (1): 196–200.CrossRefGoogle Scholar
  23. Edgar, T.F., Himmelblau, D.M., and Lasdon, L.S. (2001). Optimization of Chemical Processes. McGraw-Hill, Boston, Massachusetts, 2nd edition.Google Scholar
  24. Eigen, M. and Winkler, R. (1975). Das Spiel. Piper and Co., München, Germany.Google Scholar
  25. Floudas, C.A. (1999). Deterministic Global Optimization: Theory, Algorithms and Applications. Kluwer Academic Publishers, Dordrecht/Boston/London.Google Scholar
  26. Floudas, C.A. and Pardalos, P.M. (1990). A Collection of Test Problems for Constrained Global Optimization Algorithms, volume 455 of Lecture Notes in Computer Science. Springer-Verlag, Berlin/Heidelberg/New York.Google Scholar
  27. Floudas, C.A. and Pardalos, P.M., editors (2000). Optimization in Computational Chemistry and Molecular Biology - Local and Global Approaches. Kluwer Academic Publishers, Dordrecht/Boston/London.MATHGoogle Scholar
  28. Floudas, C.A., Pardalos, P.M., Adjiman, C., Esposito, W.R., Gumus, Z.H., Harding, S.T., Klepeis, J.L., Meyer, C.A., and Schweiger, C.A. (1999). Handbook of Test Problems in Local and Global Optimization. Kluwer Academic Publishers, Dordrecht/Boston/London.MATHCrossRefGoogle Scholar
  29. Forster, W. (1995). Homotopy methods. In Horst, R. and Pardalos, P.M., editors, Handbook of Global Optimization, pages 669–750. Kluwer Academic Publishers, Dordrecht/Boston/London.Google Scholar
  30. Fourer, R. (2001). Nonlinear programming frequently asked questions. Optimization Technology Center of Northwestern University and Argonne National Laboratory. http: //www-unix.mcs. anl. gov/otc/ Guide/faq/nonlinear-programming-faq.html.Google Scholar
  31. Fourer, R., Gay, D.M., and Kernighan, B.W. (1993). AMPL - A Modeling Language for Mathematical Programming. The Scientific Press, Redwood City, California. Reprinted by Boyd and Fraser, Danvers, Massachusetts, 1996.Google Scholar
  32. Frontline Systems (2001). Premium Solver Platform - Field-Installable Solver Engines. User Guide. Frontline Systems, Inc., Incline Village, Nevada.Google Scholar
  33. Glover, F. and Laguna, M. (1997). Tabu Search. Kluwer Academic Publishers, Dordrecht/Boston/London.MATHCrossRefGoogle Scholar
  34. Greengard, L. (1988). The Rapid Evaluation of Potential Fields in Particle Systems. The MIT Press, Cambridge, Massachusetts.Google Scholar
  35. Grossmann, I.E., editor (1996). Global Optimization in Engineering Design. Kluwer Academic Publishers, Dordrecht/Boston/London.Google Scholar
  36. Haith, D.A. (1982). Environmental Systems Optimization. Wiley, New York.Google Scholar
  37. Hansen, E.R. (1992). Global Optimization Using Interval Analysis. Marcel Dekker, New York.Google Scholar
  38. Hartke, B. (1999). Global cluster geometry optimization by a phenotype algorithm with niches: Location of elusive minima, and low-order scaling with cluster size. Journal of Computational Chemistry, 20(16):1752–1759. Google Scholar
  39. Hendrix, E.M.T. (1998). Global Optimization at Work. PhD thesis, Agricultural University Wageningen, Wageningen, The Netherlands.Google Scholar
  40. Hichert, J., Hoffman, A., and Phú, H.X. (1997). Convergence speed of an integral method for computing the essential supremum. In Bomze, I.M., Csendes, T., Horst, R., and Pardalos, P.M., editors, Developments in Global Optimization,pages 153-170. Kluwer Academic Publishers, Dordrecht/Boston/London.Google Scholar
  41. Hock, W. and Schittkowski, K. (1981). Test Examples for Nonlinear Programming Codes,volume 187 of Lecture Notes in Economics and Mathematical Systems. Springer-Verlag, Berlin/Heidelberg/New York.Google Scholar
  42. Horst, R. and Pardalos, P.M., editors (1995). Handbook of Global Optimization. Kluwer Academic Publishers, Dordrecht/Boston/London.Google Scholar
  43. Horst, R. and Tuy, H. (1996). Global Optimization - Deterministic Ap- proaches. Springer, Berlin/Heidelberg/New York, 3rd edition.Google Scholar
  44. Jacob, C. (2001). Illustrating Evolutionary Computation with Mathematica. Morgan Kaufmann Publishers, San Francisco, California.Google Scholar
  45. Jansson, C. and Knüppel, 0. (1992). A global minimization method: The multi-dimensional case. Bericht 92.1,FiuK, TUHH, Hamburg-Harburg, Germany. Journal of Global Optimization. Kluwer Academic Publishers, Dordrecht/Boston/London. Published since 1991. Google Scholar
  46. Kearfott, R.B. (1996). Rigorous Global Search: Continuous Problems. Kluwer Academic Publishers, Dordrecht/Boston/London.Google Scholar
  47. Khompatraporn, C., Zabinsky, Z.B., and Pintér, J.D. (2001). Comparative assessment of algorithms and software for global optimization. Submitted for publication.Google Scholar
  48. Laguna, M. and Gonzalez-Velarde, J.-L., editors (2000). Computing Tools for Modeling, Optimization and Simulation. Kluwer Academic Publishers, Dordrecht/Boston/London.Google Scholar
  49. Lahey Computer Systems (1999). Fortran 90 User’s Guide. Lahey Computer Systems, Inc., Incline Village, Nevada.Google Scholar
  50. Levy, A.V. and Gomez, S. (1985). The tunneling method applied for the global minimization of functions. In Boggs, P.T., editor, Numerical Optimization, pages 213–244. SIAM, Philadelphia, Pennsylvania. LINDO Systems (1996). Solver Suite. LINDO Systems, Inc., Chicago, Illinois.Google Scholar
  51. Loucks, D.P., Stedinger, J.R., and Haith, D.A. (1981). Water Resources Systems Planning and Analysis. Prentice-Hall, Englewood Cliffs, New Jersey.Google Scholar
  52. Mandelbrot, B.B. (1983). The Fractal Geometry of Nature. Freeman and Co., New York.Google Scholar
  53. Mathar, R. and Zilinskas, A. (1994). A class of test functions for global optimization. Journal of Global Optimization, 5: 195–199.MathSciNetMATHCrossRefGoogle Scholar
  54. Maximal Software (1998). MPL Modeling System. Maximal Software, Inc., Arlington, Virginia.Google Scholar
  55. Michalewicz, Z. (1996). Genetic Algorithms + Data Structures = Evolution Programs. Springer, Berlin/Heidelberg/New York, 3rd edition.MATHCrossRefGoogle Scholar
  56. Migdalas, A., Pardalos, P.M., and Värbrand, P., editors (1997). Multilevel Optimization: Algorithms and Applications. Kluwer Academic Publishers, Dordrecht/Boston/London.Google Scholar
  57. Mistakidis, E.S. and Stavroulakis, G.E. (1997). Nonconvex Optimization. Algorithms, Heuristics and Engineering Applications of the F.E.M. Kluwer Academic Publishers, Dordrecht/Boston/London.Google Scholar
  58. Mittelmann, H.D. and Spellucci, P. (2001). Decision tree for optimization software. http://plato.la.asu.edu/guide.html.Google Scholar
  59. Mockus, J., Eddy, W., Mockus, A., Mockus, L., and Reklaitis, G. (1996). Bayesian Heuristic Approach to Discrete and Global Optimization. Kluwer Academic Publishers, Dordrecht/Boston/London.Google Scholar
  60. Moré, J.J., Garbow, B.S., and Hillström, K.E. (1981). Testing unconstrained optimization software. ACM Transactions on Mathematical Software, 7: 17–41.MATHCrossRefGoogle Scholar
  61. Moré, J.J. and Wright, S.J. (1993). Optimization Software Guide, volume 14 of Frontiers in Applied Mathematics Series. SIAM, Philadelphia, Pennsylvania.Google Scholar
  62. Moré, J.J. and Wu, Z. (1997). Global continuation for distance geometry problems. SIAM Journal on Optimization, 7: 814–836.MathSciNetMATHCrossRefGoogle Scholar
  63. Murray, J.D. (1989). Mathematical Biology. Springer-Verlag, Berlin/Heidelberg/New York.MATHCrossRefGoogle Scholar
  64. Neumaier, A. (1990). Interval Methods for Systems of Equations. Cambridge University Press, Cambridge.MATHGoogle Scholar
  65. Neumaier, A. (1997). Molecular modeling of proteins and mathematical prediction of protein structure. SIAM Review, 39: 407–460.MathSciNetMATHCrossRefGoogle Scholar
  66. Neumaier, A. (1999). Molecular modeling of proteins. http://solon.cma.univie.ac.at/“neum/protein.html.Google Scholar
  67. Neumaier, A. (2001). Global optimization. http://www.mat.univie.ac.at/Tneum/glopt.html. Nonconvex Optimization and its Applications. Kluwer Academic Publishers, Dordrecht/Boston/London. Bbook series, published since 1995.http://www.wkap.nl/series.htm/NOIA.Google Scholar
  68. Orlob, G.T., editor (1983). Mathematical Modeling of Water Quality: Streams, Lakes and Reservoirs. Wiley, New York.Google Scholar
  69. Osman, I.H. and Kelly, J.P., editors (1996). Meta-Heuristics: Theory and Applications. Kluwer Academic Publishers, Dordrecht/Boston/London.MATHGoogle Scholar
  70. Pain, R.H., editor (1994). Mechanisms of Protein Folding. Oxford University Press, Oxford.Google Scholar
  71. Papalambros, P.M. and Wilde, D.J. (2000). Principles of Optimal Design - Modeling and Computation. Cambridge University Press, Cambridge, 2nd edition.MATHCrossRefGoogle Scholar
  72. Pardalos, P.M. (1995). An open global optimization problem on the unit sphere. Journal of Global Optimization, 6: 213.MathSciNetMATHCrossRefGoogle Scholar
  73. Pardalos, P.M., Shalloway, D., and Xue, G. (1996). Global Minimization of Nonconvex Energy Functions: Molecular Conformation and Protein Folding, volume 23 of DIMACS Series. American Mathematical Society, Providence, Rhode Island.Google Scholar
  74. Pintér, J.D. (1996a). Global Optimization in Action (Continuous and Lipschitz Optimization: Algorithms, Implementations and Applications). Kluwer Academic Publishers, Dordrecht/Boston/London.MATHGoogle Scholar
  75. Pintér, J.D. (1996b). Continuous global optimization software: A brief review. Optima, 52:1–8. Web version is available at: http://plato.la.asu.edu/gom.html.Google Scholar
  76. Pintér, J.D. (1999). Continuous global optimization: An introduction to models, solution approaches, tests and applications. Interactive Transactions in Operations Research and Management Science, 2 (2). http://catt.bus.okstate.edu/itorms/pinter/.
  77. Pintér, J.D. (2000a). Globally optimized spherical point arrangements: Model variants and illustrative results. To appear in Annals of Operations Research.Google Scholar
  78. Pintér, J.D. (2000b). LGO - A Model Development System for Continuous Global Optimization. User’s Guide. Pintér Consulting Services, Inc., Halifax, Nova Scotia, Canada. For summary descriptions, see http://is. dal.ca/-jdpinter/lgoide.htm; http://www.solver.com/xlslgoeng.htm.Google Scholar
  79. Pintér, J.D. (2001a). Computational Global Optimization in Nonlinear Systems - An Interactive Tutorial. Lionheart Publishing, Inc., Atlanta, Georgia. This work is also available electronically, at http://www.lionhrtpub.com/books/globaloptimization.html.Google Scholar
  80. Pintér, J.D., editor (2001b). Global Optimization: Selected Case Studies. Kluwer Academic Publishers, Dordrecht/Boston/London. To appear.Google Scholar
  81. Prékopa, A. (1995). Stochastic Programming. Kluwer Academic Publishers, Dordrecht/Boston/London.CrossRefGoogle Scholar
  82. Ratschek, H. and Rokne, J. (1988). New Computer Methods for Global Optimization. Ellis Horwood, Chichester.MATHGoogle Scholar
  83. Ratschek, H. and Rokne, J. (1993). Experiments using interval analysis for solving a circuit design problem. Journal of Global Optimization, 3: 501–518.MathSciNetMATHCrossRefGoogle Scholar
  84. Reklaitis, G.V., Ravindran, A., and Ragsdell, K.M. (1983). Engineering Optimization Methods and Applications. John Wiley and Sons, New York.Google Scholar
  85. Saff, E.B. and Kuijlaars, A.B.J. (1997). Distributing many points on a sphere. The Mathematical Intelligencer, 19 (1): 5–11.MathSciNetMATHCrossRefGoogle Scholar
  86. Sandgren, E. and Ragsdell, K.M. (1980). The utility of nonlinear programming algorithms: A comparative study–parts 1 and 2. ASME Journal of Mechanical Design, 102 (3): 540–551.CrossRefGoogle Scholar
  87. Sandia National Laboratories (1997). A Survey of Global Optimization Methods. Prepared by Gray, P., Hart, W.E., Painton, L., Phillips, C., Trahan, M., and Wagner, J. http://www.cs.sandia.gov/opt/survey/main.html.Google Scholar
  88. Schittkowski, K. (1980). Nonlinear Programming Codes: Information, Tests, Performance, volume 183 of Lecture Notes in Economics and Mathematical Systems. Springer-Verlag, Berlin/Heidelberg/New York.Google Scholar
  89. Schoen, F. (1993). A wide class of test functions for global optimization. Journal of Global Optimization, 3: 133–138.MathSciNetMATHCrossRefGoogle Scholar
  90. Schroeder, M. (1991). Fractals, Chaos, Power Laws. Freeman and Co., New York.MATHGoogle Scholar
  91. Sethi, S.P. and Thompson, G.L. (2000). Optimal Control Theory. Applications to Management Science and Economics. Kluwer Academic Publishers, Dordrecht/Boston/London, 2nd edition.MATHGoogle Scholar
  92. Somlyódy, L. and van Straten, G., editors (1983). Modeling and Managing Shallow Lake Eutrophication. Springer-Verlag, Berlin/Heidelberg/New York.Google Scholar
  93. Stewart, I. (1995). Nature’s Numbers. Basic Books. Harper and Collins, New York.Google Scholar
  94. Strongin, R.G. and Sergeyev, Ya.D. (2000). Global Optimization with Non-Convex Constraints: Sequential and Parallel Algorithms. Kluwer Academic Publishers, Dordrecht/Boston/London.MATHGoogle Scholar
  95. Voss, S., Martello, S., Osman, LH., and Roucairol, C., editors (1999). Meta-Heuristics: Advances and Trends in Local Search Paradigms for Optimization. Kluwer Academic Publishers, Dordrecht/Boston/London.MATHGoogle Scholar
  96. Wales, D.J. and Scheraga, H.A. (1999). Global optimization of clusters, crystals, and biomolecules. Science, 285: 1368–1372.CrossRefGoogle Scholar
  97. Wolfram, S. (1996). The Mathematica Book. Wolfram Media and Cambridge University Press, 3rd edition.Google Scholar
  98. Zheng, Q. and Zhuang, D. (1995). Integral global minimization: algorithms, implementations and numerical tests. Journal of Global Optimization, 7: 421–454.MathSciNetMATHCrossRefGoogle Scholar
  99. Zhigljaysky, A.A. (1991). Theory of Global Random Search. Kluwer Academic Publishers, Dordrecht/Boston/London.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media Dordrecht 2002

Authors and Affiliations

  • János D. Pintér
    • 1
  1. 1.Pintér Consulting Services Inc. and Dalhousie UniversityHalifaxCanada

Personalised recommendations