Development of Higher Brain Functions in Children

Neural, Cognitive, and Behavioral Perspectives
  • Lawrence V. Majovski
Part of the Critical Issues in Neuropsychology book series (CINP)


Higher cortical functions in children proceed through defined stages of development. Significant limitations in our knowledge exist as to the processes involved in the normal developing human brain with respect to neurophysiological, neuro-chemical, neuroanatomical, metabolic, and other related neuroscience disciplines. Attempts have been made to correlate anatomical and behavioral data in a direct manner, leading to a surfeit of postulations in the literature against a shortage of supporting data for known brain—behavior relationships in children (Taylor, Fletcher, & Satz, 1984). Much emphasis tends to be placed on proposed neural mechanisms and theories accounting for changes regarding development of the human central nervous system (CNS) versus description of changes taking place with respect to normal development of the human brain. Major difficulties exist in drawing fixed conclusions because each human brain is unique with respect to its molecular blueprint, cellular differentiation pattern, acculturation factors, and neural growth patterns (Cooke, 1980; McConnell, 1991).


Cerebral Cortex Cerebral Blood Flow Cerebral Hemisphere Declarative Memory Corpus Striatum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aboitiz, F., Scheibel, A. B., Fisher, R. S.,& Zaidel, E. (1992). Fiber composition of the human corpus callosum. Brain Research, 598, 143–153.Google Scholar
  2. Afifi, A. K.,& Bergman, R. A. (1980). Basic neuroscience. Munich: Urban& Schwarzenberg.Google Scholar
  3. Altman, D. I., Powers, W. J., Perlman, J. M., Herscovitch, P., Volpe, S. L.,& Volpe, J. J. (1988). Cerebral blood flow requirements for brain viability in newborn infants is lower than adults. Annals of Neurology, 24, 218–226.Google Scholar
  4. Altman, J., Brunner, R. L.,& Bayer, S. A. (1973). The hippocampus and behavioral maturation. Behavioral Biology, 8, 557.CrossRefGoogle Scholar
  5. Anderson, P. (1975). Organization of hippocampal neurons and their interconnections. In R. L. Isaacson& K. H. Pribam (Eds.), The hippocampus (Vol. I ). New York: Plenum Press.Google Scholar
  6. Annett, M. (1978). Genetic and nongenetic influences on handedness. Behavior, 8, 227–249.Google Scholar
  7. Arey, L. B. (1974). Developmental anatomy ( 7th ed. ). Philadelphia: Saunders.Google Scholar
  8. Bakan, P. (1971). Handedness and birth order. Nature, 229, 195.PubMedCrossRefGoogle Scholar
  9. Barnet, A. B. (1966). Visual responses in infancy and their relation to early visual experience. Clinical Proceedings Children’s Hospital National Medical Center, 22, 273.Google Scholar
  10. Bear, D. M. (1986). Hemispheric asymmetries in emotional functioning. In B. K. Doane& K. E. Livingston (Eds.), The limbic system: Functional organization and clinical disorders. New York: Raven Press.Google Scholar
  11. Bekkers, J. M. (1993). Enhancement by histamine of NMDAmediated synaptic transmission in the hippocampus. Science, 261, 104–106.PubMedCrossRefGoogle Scholar
  12. Bennes, F. M., Turtle, M., Khan, Y.,& Farol, P. (1994). Myelination of a key relay zone in the hippocampal formation occurs in the human brain during childhood, adolescence and adulthood. Archives of General Psychiatry, 5/, 477–484.Google Scholar
  13. Benson, D. F.,& Zaidel, E. (Eds.). (1985). The dual brain: Hemispheric specialization in humans. New York: Guilford Press.Google Scholar
  14. Bernstine, R. L, Borkowski, W. J.,& Price, A. H. (1955). Prenatal fetal electroencephalography. American Journal of Obstetrics and Gynecology, 70, 623.Google Scholar
  15. Bloom, F. E. (1973). Dynamic synaptic communication: Finding the vocabulary. Brain Research, 62, 229–305.CrossRefGoogle Scholar
  16. Bloom, F. E. (1979). Neurobiological research and selective attention. H. G. Birch Memorial Lecture, 1979 International Neuropsychological Society, San Francisco.Google Scholar
  17. Bloom, F. E. (Ed.). (1994). Neuroscience: From the molecular to the cognitive. Progress in Brain Research, 100. New York: Elsevier.Google Scholar
  18. Bogen, J. E. (1969). The other side of the brain: Parts I, II, III. Bulletin of the Los Angeles Neurological Society, 34, 73–105, 135–162, 191–203.Google Scholar
  19. Bower, T. G. R. (1977). The perceptual world of the child. Cambridge, MA: Harvard University Press.Google Scholar
  20. Bradshaw, J. L.,& Nettleson, N. C. (1983). Human cerebral asymmetry. Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
  21. Brandeis, D., Vitacco, D.,& Steinhausen, H. C. (1994). Mapping brain electric microstates in dyslexic children during reading. Acta-Paedopsychiatrica, 56, 239–247.Google Scholar
  22. Bronson, G. W. (1982). The scanning patterns of human infants: Implications for visual learning. Norwood, NJ: Ablex.Google Scholar
  23. Bruns, F. J., Fraley, D. S., Haigh, J., Marquez, J. M., Martin, D. J., Matuschak, G. M.,& Snyder, J. V. (1987). Control of blood flow in organs. In J. V. Snyder& M. R. Pinsky (Eds.), Oxygen transport in the critically ill (pp. 87–125 ). Chicago: Year Book Medical.Google Scholar
  24. Bryden, M. (1979). Evidence for sex differences in cerebral organization. In M. Wittig& A. Peterson (Eds.), Determinants of sex-related differences in cognitive functioning. New York: Academic Press.Google Scholar
  25. Buffery, A. W. H. (1976). Sex differences in the neuropsychological development of verbal and spatial skills. In R. M. Knights& D. J. Bakker (Eds.), The neuropsychology of learning disorders. Baltimore: University Park Press.Google Scholar
  26. Bushnell, E. W. (1982). Visual-tactual knowledge in 8-, 91-, and 11-month-old infants. Infant Behavior and Development, 5, 63–75.CrossRefGoogle Scholar
  27. Cady, E. B., Costello, A. M., Dawson, M. J., Delpy, D. T., Hope, P. L., Reynolds, E. O., Tofts, P. S.,& Wilkie, D. R. (1983). Non-invasive investigation of cerebral metabolism in newborn infants by phosphorus nuclear magnetic resonance spectroscopy. Lancet, 8333, 1059–1062.Google Scholar
  28. Carlson, B. M. (1994). Human embryology and developmental biology (pp. 204–251 ). St. Louis: Mosby.Google Scholar
  29. Carlson, N. R. (1994). Physiology of behavior ( 5th ed. ). Boston: Allyn& Bacon.Google Scholar
  30. Carpenter, M. B. (1978). Core text of neuroanatomy ( 2nd ed. ). Baltimore: Williams& Wilkins.Google Scholar
  31. Chugani, H. T. (1992). Functional brain imaging in pediatrics. Pediatric Clinics of North America, 39, 777–799.PubMedGoogle Scholar
  32. Chugani, H. T. (1993). Positron emission tomographic scanning: Applications in newborns. Clinic in Perinatologv, 20, 395–409.Google Scholar
  33. Chugani, H. T. (1994). The role of PET in childhood epilepsy. Journal of Child Neurology, 9 (Suppl.), 582–588.CrossRefGoogle Scholar
  34. Chugani, H. T.,& Jacobs, B. (1994). Metabolic recovery in caudate nucleus following cerebral hemispherectomy. Annals of Neurology 36, 794–797.Google Scholar
  35. Chugani, H. T.,& Phelps, M. E. (1986). Maturational changes in cerebral function in infants determined by ‘8FDG positron emission tomography. Science, 231, 840–843.PubMedCrossRefGoogle Scholar
  36. Cohen, L. B. (1979). Our developing knowledge of infant perception and cognition. American Psychologist, 34, 894–899.PubMedCrossRefGoogle Scholar
  37. Cohen, L. B., DeLoache, J. S.,& Strauss, M. S. (1979). Infant perceptual development. In J. D. Osofosky (Ed.), Handbook of infant development. New York: Wiley.Google Scholar
  38. Cohen, M.,& Roesmann, U. (1994). In utero brain damage: Relationship of gestational age to pathological consequences. Developmental Medicine and Child Neurology, 36, 263–268.CrossRefGoogle Scholar
  39. Connelly, A., Jackson, G. D., Frackowiak, R. S., Belliveau, J. W., Vargha-Khadem, F.,& Gadian, G. D. (1993). Functional mapping of activated human primary cortex with a clinical MR imaging system. Radiology, 188, 125–130.Google Scholar
  40. Cooke, J. (1980). Early organization of the central nervous system: Form and pattern. In R. K. Hunt (Ed.), Neural development. New York: Academic Press.Google Scholar
  41. Cooper, J. R.& Bloom, F. E. (1991). The biochemical basis ofneuropharmacology ( 6th ed. ). London: Oxford University Press.Google Scholar
  42. Corballis, M. C. (1980). Is left-handedness genetically determined? In J. Herron (Ed.), Neuropsychology of left handedness. New York: Academic Press.Google Scholar
  43. Corballis, M. C. (1982). Asymmetries in spatial representation: Anatomical or perceptual? In R. N. Malatesha& L. C. Hartlage (Eds.), Neuropsychology and cognition (Vol. 1 ). The Hague: Nijhoff.Google Scholar
  44. Courchesne, E., Townsend, J.,& Saitoh, O. (1994). The brain in infantile autism: Posterior fossa structures are abnormal: Neurology, 44, 214–223.PubMedGoogle Scholar
  45. Cowell, P. E., Allen, L. S., Kertesz, A., Zalatimo, N. S.,& Demenberg, V. H. (1994). Human corpus callosum: A stable mathematical model of regional neuroanatomy. Brain and Cognition, 25, 52–66.Google Scholar
  46. Cravioto, J.,& Arrieta, R. (1979). Stimulation and mental de- velopment of malnourished infants. Lancet, 2, 899.Google Scholar
  47. Cravioto, J.,& Arrieta, R. (1983). Malnutrition in childhood. In M. D. Rutter (Ed.), Developmental neuropsychiatry. New York: Guilford Press.Google Scholar
  48. Crelin, E. S. (1973). Functional anatomy of the newborn. New Haven, CT: Yale University Press.Google Scholar
  49. Crelin, E. S. (1974). Development of the nervous system: A logical approach to neuroanatomy. Ciba Clinical Symposia, 26, 1–32.Google Scholar
  50. Cross, J. H., Gadian, D. G., Connelly, A.,& Leonard, J. V. (1993). Proton magnetic resonance spectroscopy studies in lactic acidosis and mitochondrial disorders. Journal of Inherited Metabolic Disorders, 16, 800–811.CrossRefGoogle Scholar
  51. Curtiss, S. (1979). Genie: Language and cognition. UCLA Working Papers in Cognitive Linguistics, 1, 15–62.Google Scholar
  52. Damasio, H. (1989). Anatomical and neuroimaging contribution to the study of aphasia. In H. Goodglass (Ed.), Handbook of neuropsychology (Vol. II ). Amsterdam: Elsevier.Google Scholar
  53. Darley, F. L.,& Fay, W. H. (1980). Speech mechanism. In F. M. Laasman, R. O. Fisch, D. K. Vetter,& E. S. Benz (Eds.), Early correlates of speech, language, and hearing. Littleton, MA: PSG Publishing.Google Scholar
  54. Daughaday, W. H. (1981). The adenohypophysis. In R. H. Williams (Ed.), Textbook of endocrinology. Philadelphia: Saunders.Google Scholar
  55. Davies, P.,& Stewart, A. L. (1975). Low birthweight infants: Neurological sequelae and later intelligence. British Medical Bulletin, 31, 85.Google Scholar
  56. Davison, A. N.,& Dobbing, J. (1968). The developing brain. In A. N. Davison& J. Dobbing (Eds.), Applied neurochemistry. Oxford: Blackwell.Google Scholar
  57. Davison, A. N.,& Peter, A. (1970). Myelination. Springfield, IL: Thomas.Google Scholar
  58. DeLong, G. R. (1993). Effects of nutrition on brain development in humans. American Journal of Clinical Nutrition, 57, (Suppl. 2), 2868–2905.Google Scholar
  59. DeVilliers, P. A.,& DeVilliers, J. G. (1979). Early language. Cambridge, MA: Harvard University Press.Google Scholar
  60. DeVos, K. J., Wyllie, E., Geckler, C., Kotagal, P.,& Comair, Y. (1995). Language dominance in patients with early childhood tumors near left hemisphere language areas. Neurology, 45, 349–356.Google Scholar
  61. Dietrich, R. B. (1990). Myelin disorders of childhood: Correlation of MR findings and severity of neurological impairment. Journal of Computer Assisted Tomography; 14, 693.PubMedCrossRefGoogle Scholar
  62. Dietrich, R. B., Bradley, W. G., Zaragoza, E. J., Otto, R. J., Taira, R. K., Wilson, G. H.,& Kangarbo, H. (1988). MR evaluation of early myelination patterns in normal and developmentally delayed infants. American Journal of Roentgenology, 150, 889–896.Google Scholar
  63. Dietrich, R. B.,& Hoffman, C. H. (1992). Myelination and dysmyelination. In D. D. Stark& W. G. Bradley (Eds.), Magnetic resonance imaging. St. Louis: Mosby-Year Book.Google Scholar
  64. DiGuilio, D. V., Seidenberg, M., O’Leary, D. S.,& Raz, N. (1994). Procedural and declarative memory: A developmental study. Brain and Cognition, 25, 79–91.Google Scholar
  65. Dobbing, J. (1975). Prenatal nutritional and neurological development. In N. A. Buchwald& M. A. B. Brazier (Eds.), Brain mechanism in mental retardation. New York: Academic Press.Google Scholar
  66. Dobbing, J. (1990). Early nutrition and later achievement. Boyd Memorial Lecture. Proceedings of the Nutrition Society, 49, 103–118.PubMedCrossRefGoogle Scholar
  67. Dobbing, J.,& Sands, J. (1970). Timing of neuroblast multipli- cation in developing human brain. Nature, 226, 639.Google Scholar
  68. Dobbing, J.,& Sands, J. (1973). Quantitative growth and development of human brain. Archives of Disabled Children, 48, 757.Google Scholar
  69. Dobbing, J.,& Smart, J. L. (1974). Vulnerability of developing brain and behavior. British Medical Bulletin, 30, 164. Dodge, P., Prensky, A.,& Feigin, R. (1975). Nutrition and the developing nervous system. St. Louis: Mosby.Google Scholar
  70. Dodgson, M. C. H. (1962). The growing brain: An essay in de- velopmental neurology. Bristol, England: Wright Press.Google Scholar
  71. Dunn, A. J. (1976). The chemistry of learning and the formation of memory. In W. H. Gispen (Ed.), Molecular and functional neurobiology. Amsterdam: Elsevier.Google Scholar
  72. Dunn, A. J. (1980). Neurochemistry of learning and memory: An evaluation of recent data. Annual Review of Psychology, 31, 343–390.PubMedCrossRefGoogle Scholar
  73. Ellingson, R. J. (1964). Studies of the electrical activity of the de- veloping human brain. Progress in Brain Research, 9, 26–53. Emde, R. N., Gaensbauer, T. J.,& Harmon, R. J. (1976). Emo- tional expression of infancy: A behavioral study (Vol. 10 ). New York: International University Press.Google Scholar
  74. Epstein, H. T. (1978). Growth spurts during brain development: Implications for educational policy and practice. In J. S. Chall& A. F. Mirsky (Eds.), Education and the brain: The 77th yearbook of the National Society for the Study of Education (Part I I ). Chicago: University of Chicago Press.Google Scholar
  75. Fender, D. H. (1985). Source localization of brain electrical activity. In A. Gevins& A. Remond (Eds.), Handbook of elect roencephalography and clinical neurophysiology (Vol. 3A ). Amsterdam: Elsevier.Google Scholar
  76. Finkelstein, S., Alpert, N. M., Ackerman, R. H., Buonano, E S., Correia, J. A., Chang, J., Kulas, S., Brownell, G. L.,& Taveras, J. M. (1980). Positron imaging of the normal brain-Regional patterns of cerebral blood flow and metabolism. Transactions of the American Neurological Association, 105, 8–10.Google Scholar
  77. Flechsig, P. (1883). Plan des menschlichen Gehirns. Leipzig: Veit. Franz, R. L. (1963). Pattern vision in newborn infants. Science, 140, 296.Google Scholar
  78. Gaddes, W. H. (1980). Learning disabilities and brain function: A neuropsychological approach. Berlin: Springer-Verlag.CrossRefGoogle Scholar
  79. Gadian, D. G., Connelly, A., Duncan, J. S., Cross, J. H., Kirkhan, F. J., Johnson, C. L., Vargha-Khadem, E, Nevile, B. G.,& Jackson, G. D. (1994). I H magnetic resonance spectroscopy in the investigation of intractable epilepsy. Acta Neurological Scandinavica, 152, 116–121.CrossRefGoogle Scholar
  80. Gallen, C. C., Sobel, D. E, Schwartz, B., Copeland, B., Waltz, T.,& Aung, M. (1993, August 28). Magnetic source imaging: Present and future. Investigative Radiology, 3, ( Suppl.), 5153–5157.Google Scholar
  81. Geschwind, N.,& Galaburda, A. M. (Eds.). (1984). Cerebral dominance. Cambridge, MA: Harvard University Press.Google Scholar
  82. Gevins, A. S., Doyle, J. C., Cutillo, B. A., Schaffer, R. E., Tannehill, R. S., Ghannam, J. H., Gilcrease, V. A.,& Yeager, C. L. (1981). Electrical potentials in human brain during cognition-New method reveals dynamic patterns of correlation. Science, 213, 918–921.Google Scholar
  83. Goldman, P. S. (1975). Age, sex and experience as related to the neural basis of development. In N. A. Buchwald& M. A. B. Brazier (Eds.), Brain mechanisms in mental retardation. New York: Academic Press.Google Scholar
  84. Goodglass, H.,& Kaplan, E. (1972). The assessment of aphasia and related disorders. Philadelphia: Lea& Febiger.Google Scholar
  85. Goplerud, J. M.,& Delivoria-Papadopoulos, M. (1993). Nuclear magnetic resonance imaging and spectroscopy following asphyxia. Clinical Perinatology, 20, 345–367.Google Scholar
  86. Gottlieb, G. (1976a). Conceptions of prenatal development: Behavioral embryology. Psychological Review, 83, 215–234.PubMedCrossRefGoogle Scholar
  87. Gottlieb, G. (1976b). The roles of experience in the development of behavior and the nervous system. In G. Gottleib (Ed.), Neural and behavioral specificity. New York: Academic Press.Google Scholar
  88. Graham, S. H., Myerhoff, D. J., Bayne, L,. Sharp, E R.,& Weiner, M. W. (1994). Magnetic resonance spectroscopy of N-acetylaspartate in hypoxic-ischemic encephalopathy. Annals of Neurology, 35, 490–494.Google Scholar
  89. Grossberg, S. (1980). How does a brain build a cognitive code? Psychological Review, 87, 1–51.PubMedCrossRefGoogle Scholar
  90. Gur, R. C.,& Reivich, M. (1980). Cognitive task effects on hemispheric blood flow in humans; evidence for individual differences in hemispheric activation. Brain and Language, 9, 78–92.Google Scholar
  91. Hack, M., Taylor, H. G., Klein, N., Eiben, R., Schatschneider, C.,& Mercuri-Minich, N. (1994). School-age outcomes in children with birth weights under 750 g. New England Journal of Medicine, 331, 753–759.Google Scholar
  92. Hagne, I. (1972). Development of the EEG in the normal infants during the first year of life. Acta Paediatrica Scandinavica, 232 (Suppl. 1), 5.Google Scholar
  93. Halasz, B. (1994). Hypothalamo-anterior pituitary system and pituitary portal vessels. In H. Imura (Ed.), The pituitary gland ( 2nd ed., pp. 1–28 ). New York: Raven Press.Google Scholar
  94. Hamilton, W. J.,& Mossman, H. W. (1974). Human embryology: Prenatal development of form and function ( 4th ed. ). London: Heffer.Google Scholar
  95. Hebb, D. O. (1949). The organization of behavior. New York: Wiley.Google Scholar
  96. Heindel, W. C., Salmon, D. P., Shults, C. W., Walicke, P. A.,& Butters, N. A. (1989). Neuropsychological evidence for multiple implicit memory strategies: A comparison of Alzheimers, Huntington, and Parkinson disease patients. Journal of Neuroscience, 9, 282–287.Google Scholar
  97. Hillyard, S. J. (1987). Electrophysiology of cognition. In V. Mountcastle, F. Plum,& S. Geiger (Eds.), Handbook of physiology: Sec. I. The Nervous System: Vol. V. (pp. 519–584 ). Bethesda: American Physiological Society.Google Scholar
  98. Hittmair, K., Wimberger, D., Rand T., Prayer, L., Bemert, G., Kramer, J.,& Imhof, H. (1994). MR assessment of brain maturation: Comparison of consequences. American Journal of Neuroradiology, 15, 425–433.Google Scholar
  99. Hope, P. L., Costelo, A. M., Cady, E. B., Delpy, D. T., Tofts, P. S., Chu, A., Hamilton, P. A., Reynolds, E. 0.,& Wilkie, D. R. (1984). Cerebral energy metabolism studied with phosphorus NMR spectroscopy in normal and birth-asphyxiated infants. Lancet, 2, 366–370.Google Scholar
  100. Hope, P. L.,& Moorecraft, J. (1991). Magnetic resonance spectroscopy. Clinical Perinatology, 18, 535–548.Google Scholar
  101. Hudspeth, W. J.,& Pribram, K. H. (1992). Psychophysiological indices of cerebral maturation. International Journal of Psychophysiology, 12, 19–29.CrossRefGoogle Scholar
  102. Huk, W. J.,& Vieth, J. (1993). Functional imaging of the brain. Radiologe, 33, 633–638.Google Scholar
  103. Humphrey, T. (1964). Some correlation between the appearance of human fetal reflexes and the development of the nervous system. In D. P. Purpura& J. P. Schade (Eds.), Progress in brain research: Growth and maturation of the brain (vol. 4 ). Amsterdam: Elsevier.Google Scholar
  104. Humphrey, T. (1978). Function of the nervous system during prenatal life. In U. Stave& A. A. Weech (Eds.), Perinatal physiology. New York: Plenum Medical.Google Scholar
  105. Imura, H. (1994). The pituitary gland ( 2nd ed. ). New York: Raven Press.Google Scholar
  106. Ingvar, D. H., Sjölund, B.,& Ardö, A. (1976). Correlation between dominant EEG frequency, cerebral oxygen uptake and blood flow. Encephalography and Clinical Neuro-physiology, 41, 268–276.Google Scholar
  107. Ito, M. (1984). The cerebellum and neural control. New York: Raven Press.Google Scholar
  108. Izquierdo, I. (1975). The hippocampus and learning. Progress in Neurobiology, 5, 37–75.PubMedCrossRefGoogle Scholar
  109. Jackson, G. D., Connelly, A., Cross, J. H., Gordon, I.,& Gaidan, D. E. (1994). Functional magnetic resonance imaging of focal seizures. Neurology, 44, 850–856.Google Scholar
  110. Jacobs, B. L. (1994). Serotonin, motor activity, and depression- related disorders. American Scientist, 82, 456–463.Google Scholar
  111. Jernigan, T. L., Hesselink, J. R., Sowell, E.,& Tallal, P. A. (1991). Cerebral structure on magnetic resonance imaging in language and learning-impaired children. Archives of Neurology, 48, 539–545.PubMedCrossRefGoogle Scholar
  112. Jones, E. G.,& Cowan, W. M. (1978). Nervous tissue: Development of nervous tissue. In E. Weiss (Ed.), Textbook of histology. New York: McGraw-Hill.Google Scholar
  113. Kagan, J. (1981). The second year. Cambridge, MA: Harvard University Press.Google Scholar
  114. Kagan, J. (1985). The human infant. In A. M. Rogers& C. J. Scheirer (Eds.), The G. Stanley Hall lecture series (Vol. 5 ). Washington, DC: American Psychological Association.Google Scholar
  115. Kagan, J., Kearsley, R. B.,& Zelazo, R. R. (1978). Infancy: Its place in human development. Cambridge, MA: Harvard University Press.Google Scholar
  116. Kagan, J.,& Moss, H. A. (1983). Birth to maturity. New Haven, CT: Yale University Press.Google Scholar
  117. Kahle, W., Leonhardt, H.,& Platzer, W. (1978). Color atlas and textbook of human anatomy (Vol. 3 ). Chicago: Year Book Medical.Google Scholar
  118. Kail, R. V., Jr.,& Hagen, J. W. (1977). Perspectives on the development of memory and cognition. Hillsdale, NJ: Erlbaum.Google Scholar
  119. Kaplan, S. L., Grumbach, M. M.,& Aubert, M. L. (1976). The ontogenesis of pituitary hormone and hypothalamic factors in the human fetus: Maturation of the central nervous systern regulation of anterior pituitary function. Recent Progress in Hormone Research, 32, 161.Google Scholar
  120. Kety, S. S. (1970). The biogenic amines in the central nervous system: Their possible roles in arousal, emotion and learning. In E. O. Schmitt (Ed.), The neurosciences: Second study program. New York: Rockefeller University Press.Google Scholar
  121. Kimura, D. (1967). Functional asymmetry of the brain in dichotic listening. Cortex, 3, 163–178.Google Scholar
  122. Kimura, D.,& Harshman, R. (1984). Sex differences in brain organization for verbal and nonverbal functions. In G. De Vries, J. De Bruin, H. Vylings,& M. Conner (Eds.), Progress in brain research. Amsterdam: Elsevier.Google Scholar
  123. Kinsbourne, M. (1974). Mechanisms of hemisphere interaction in man. In M. Kinsbourne& W. L. Smith (Eds.), Hemisphere disconnection and cerebral function. Springfield, IL: Thomas.Google Scholar
  124. Kinsbourne, M. (1976). The ontogeny of cerebral dominance. In R. Reiber (Ed.), The neuropsychology of language. New York: Plenum Press.Google Scholar
  125. Kinsbourne, M. (1982). Hemispheric specialization and the growth of human understanding. American Psychologist, 37, 411–420.PubMedCrossRefGoogle Scholar
  126. Kinsbourne, M.,& Hiscock, M. (1977). Does cerebral dominance develop? In S. J. Segalowitz& F. A. Gruber (Eds.), Language development and neurological theory. New York: Academic Press.Google Scholar
  127. Kinsbourne, M.,& Hiscock, M. (1978). Cerebral lateralization and cognitive development. In J. S. Chall& A. F. Mirsky (Eds.), Education and the brain: The 77th yearbook of the National Society for the Study of Education (Part I I ). Chicago: University of Chicago Press.Google Scholar
  128. Krashen, S. (1973). Lateralization, language, learning, and the critical period: Some new evidence. Language and Learning, 23, 63–74.CrossRefGoogle Scholar
  129. Kreis, R., Ernst, T.,& Ross, B. D. (1993). Development of the human brain: In vivo quantification of metabolite and water content with proton magnetic resonance spectroscopy (1H-MRS). Magnetic Resonance Medicine, 30, 424–437.Google Scholar
  130. Kuffler, S. W.,& Nicholls, J. G. (1977). From neuron to brain: A cellular approach to the function of the nervous system. Sunderland, MA: Sinauer Associates.Google Scholar
  131. Kulynych, J., Vladar, K., Jones, D.,& Weinberger, D. (1994). Gender differences in the normal lateralization of the supratemporal cortex: MRI surface-rendering morphometry of Heschel’s gyms and planum temporale. Cerebral Cortex, 4 ( 2), 107–118.Google Scholar
  132. Kwong, K. K., Belliveau, J. W., Chesler, D. A., Goldberg, I. E., Weisskoff, R. M., Poncelet, B. P., Kennedy, D. N., Hoppel, B. E., Cohen, M. S.,& Turner, R. (1992). Dynamic magnetic resonance imaging of human brain activity during primary sensory stimulation. Proceedings of the National Academy of Sciences, USA, 89, 5675–5679.Google Scholar
  133. Langman, J. (1975). Medical embryology: Human development-normal and abnormal ( 3rd ed. ). Baltimore: Williams& Wilkins.Google Scholar
  134. Lashley, K. S., Chow, K. L., and Semmes, J. (1951). An examination of the electrical field theory of cerebral integration. Psychology Review, 58, 123–136.CrossRefGoogle Scholar
  135. Le Douarin, N. (1980). Migration and differentiation of neural crest cells. In R. K. Hunt (Ed.), Neural development. New York: Academic Press.Google Scholar
  136. Lehninger, A. L. (1968). The neuronal membrane. Proceedings of the National Academy of Sciences, USA, 60, 1069–1080.CrossRefGoogle Scholar
  137. Lehninger, A. L. (1993). Principles of biochemistry. New York: Worth.Google Scholar
  138. Lemire, R. J., Loeser, J. D., Alvord, E. C.,& Leech, R. W. (1975). Normal and abnormal development of the human nervous system. New York: Harper& Row.Google Scholar
  139. Lenneberg, E. H. (1964). The natural history of language. In F. Smith& G. A. Miller (Eds.), The genesis of language: A psycholinguistic approach. Cambridge, MA: MIT Press.Google Scholar
  140. Lenneberg, E. H. (1967). Biological foundation of language. New York: Wiley.Google Scholar
  141. Levene, M. I.,& Dubowitz, L. M. S. (1982). Low-birth weight babies long-term follow-up. British Journal of Hospital Medicine, 24, 487.Google Scholar
  142. Levine, S. (1982). Comparative and psychobiological perspectives on development. In A. Collins (Ed.), Minnesota symposium (Vol. 15 ). Hillsdale, NJ: Erlbaum.Google Scholar
  143. Leviton, A.,& Paneth, N. (1990). White matter damage in preterm newborns: An epidemiologic perspective. Early Human Development, 24 (1), 1–22.Google Scholar
  144. Levy, J. (1972). Lateral specialization of the human brain: Behavioral manifestation and possible evolutionary basis. In J. A. Kiger (Ed.), Biology of behavior. Corvaillis: Oregon State University Press.Google Scholar
  145. Levy-Agresti, J.,& Sperry, R. W. (1968). Differential perceptual capacities in major and minor hemispheres. Proceedings of the National Academy of Sciences, USA, 61, 1151.Google Scholar
  146. Liben, L. S., Patterson, A. H.,& Newcombe, N. (1981). Spatial representation and behavior across the life span: Theory and application. New York: Academic Press.Google Scholar
  147. Lindsley, D. B. (1939). A longitudinal study of the occipital alpha rhythm in normal children: Frequency and amplitude standards. Journal of Genetic Psychology, 55, 197–213.Google Scholar
  148. Lindsley, D. B.,& Wicke, J. D. (1974). The electroencephalogram: Autonomous electrical activity in man and animals. In R. F. Thompson& M. M. Patterson (Eds.), Bioelectric recording techniques. Part B. Electroencephalography and human brain potentials. New York: Academic Press.Google Scholar
  149. Livingston, R. B. (1978). Sensory processing, perception, and behavior. New York: Raven Press.Google Scholar
  150. Lorber, J. (1980). Is your brain really necessary? Science, 210, 1232–1234.CrossRefGoogle Scholar
  151. Lowrey, G. H. (1978). Growth and development of children ( 7th ed. ). Chicago: Year Book Medical.Google Scholar
  152. Lund, R. D. (1978). Development and plasticity of the brain: An introduction. London: Oxford University Press.Google Scholar
  153. Luria, A. R. (1960). Verbal regulation of behavior. In M. Brazier (Ed.), The CNS and behavior. New York: Josiah Macy Jr. Foundation.Google Scholar
  154. Luria, A. R. (1961). The role of speech in the regulation of normal and abnormal behavior. Elmsford, NY: Pergamon Press.Google Scholar
  155. Luria, A. R. (1966). The human brain and psychological processes. New York: Harper& Row.Google Scholar
  156. Luria, A. R. (1969a). Origin and brain organization of conscious activity. Evening lecture to the 19th International Congress of Psychology. London: Dorset Press.Google Scholar
  157. Luria, A. R. (1969b). Frontal lobe syndromes. In P. J. Vinken& G. W. Bruyn (Eds.), Handbook of clinical neurology (Vol. 2 ). Amsterdam: North-Holland.Google Scholar
  158. Luria, A. R. (1969c). Speech development and the formation of mental processes. In J. Cole& I. Maltzman (Eds.), A handbook of contemporary Soviet psychology. New York: Basic Books.Google Scholar
  159. Luria, A. R. (1970). The functional organization of the brain. Scientific American, 222, 66–78.PubMedCrossRefGoogle Scholar
  160. Luria, A. R. (1973a). The working brain. New York: Basic Books.Google Scholar
  161. Luria, A. R. (1973b). The frontal lobes and the regulation of behavior. In A. R. Luria& K. H. Pribram (Eds.), The behavioral psychophysiology of the frontal lobes. New York: Academic Press.Google Scholar
  162. Luria, A. R. (1980). Higher cortical functions in man ( 2nd ed. ). New York: Basic Books.CrossRefGoogle Scholar
  163. Luria, A. R. (1982). Language and cognition. New York: WileyInterscience.Google Scholar
  164. Luria, A. R.,& Simernitskaya, E. G. (1977). Interhemispheric relations and the functioning of the minor hemisphere. Neuropsychologia, 15, 175–178.Google Scholar
  165. Luria, A. R.,& Yudovich, F. I. (1959). Speech in the develop- ment of mental processes in the child. London: Staples.Google Scholar
  166. McCarthy, G., Blamire, A. M., Rothman, D. L., Gruetter, R.,& Shulman, R. G. (1993). Echo-planar magnetic resonance imaging studies of frontal cortex activation during word generation in humans. Proceedings of the National Academy of Sciences, USA, 90, 4952–4956.Google Scholar
  167. McConnell, S. K. (1988). Development of decision-making in the mammalian cerebral cortex. Brain Research Review, 13, 1–23.CrossRefGoogle Scholar
  168. McConnell, S. K. (1991). The generation of neuronal diversity in the central nervous system. Annual Review of Neuroscience, 14, 269–300.PubMedCrossRefGoogle Scholar
  169. McCormick, C. M.,& Witelson, S. F. (1994). Functional cerebral asymmetry and sexual orientation in men and women. Behavioral Neuroscience, 108, 525–531.Google Scholar
  170. Magnun, G. R., Hillyard, S. A.,& Luck, S. J. (1993). Attention and performance XIV (pp. 219–244 ). Cambridge, MA: MIT Press.Google Scholar
  171. Majovski, L. V.,& Jacques, D. B. (1982). Cognitive information processing and learning mechanisms of the brain. Neurosurgery, 10, 663–677.Google Scholar
  172. Majovski, L. V., Jacques, D. B., Hartz, G.,& Fogwell, L. A. (1981). Dopaminergic (DA) systems: Their role in pathological neurobehavioral symptoms. Neurosurgery, 9, 751–757.Google Scholar
  173. Martin, E., Grutter, R.,& Boesch, O. (1990). In vivo NMR spectroscopy: Investigation of brain metabolism in neonates and infants. Pediatre, 45, 877–882.Google Scholar
  174. Mazziotta, J. C.,& Phelps, M. E. (1985). Metabolic evidence of lateralized cerebral function demonstrated by positron emission tomography in patients with neuropsychiatric disorders and normal individuals. In D. E Benson& E. Zaidel (Eds.), The dual brain. New York: Guilford Press.Google Scholar
  175. Mazziotta, J. C., Phelps, M. E.,& Miller, J. (1981). Tomographic mapping of human cerebral metabolism. Normal unstimulated state. Neurology, 31, 503–516.Google Scholar
  176. Metcof, J. (1974). Biochemical markers of intrauterine malnutrition. In M. Winick (Ed.), Current concepts in nutrition (Vol. 2 ). New York: Wiley.Google Scholar
  177. Meudell, P. R. (1983). The development and dissolution of memory. In A. Mayes (Ed.), Memory in animals and humans. Princeton, NJ: Van Nostrand-Reinhold.Google Scholar
  178. Mills, D. L., Coffey, C. S.,& Neville, H. J. (1993). Language acquisition and cerebral specialization in 20-month-old infants. Journal of Cognitive Neuroscience, 5, 317–334.Google Scholar
  179. Milner, E. (1976). CNS maturation and language acquisition. In H. Whitaker& H. A. Whitaker (Eds.), Studies in neurolinguistics (Vol. I ). New York: Academic Press.Google Scholar
  180. Mishkin, M.,& Petri, H. L. (1984). Memories and habits: Some implications for the analysis of learning and retention. In L. R. Squire& N. Butlers (Eds.), Neuropsychology of memory. New York: Guilford Press.Google Scholar
  181. Mistretta, C. M.,& Bradley, R. M. (1978). Effect of early sensory experience on brain and behavioral development. In G. Gottlieb (Ed.), Studies on the development of behavior and the nervous system (Vol. 4 ). New York: Academic Press.Google Scholar
  182. Molfese, D. L. (1977). Infant cerebral asymmetry. In S. J. Segalowitz& F. A. Gruber (Eds.), Language development and neurological theory. New York: Academic Press.Google Scholar
  183. Molfese, D., Freeman,R.,& Palermo, D. (1975). The ontogeny of brain lateralization for speech and nonspeech stimuli. Brain Language, 2, 356–368.Google Scholar
  184. Moore, K. L.,& Persand, T. V. N. (1993a). Before we were born: Essentials of embryology and birth defects (4th ed., pp. 45–59 ). Philadelphia: Saunders.Google Scholar
  185. Moore, K. L.,& Persand, T. V. N. (1993b). The developing human. Clinically oriented embryology ( 5th ed. ). Philadelphia: Saunders.Google Scholar
  186. Moore, R. Y. (1977). The developmental organization of the fetal brain. In L. Gluck (Ed.), Intrauterine asphyxia and the developing fetal brain. Chicago: Year Book Medical.Google Scholar
  187. Morgan, M. (1977). Embryology and inheritance of asymmetry. In S. Hamad, R. Doty, L. Goldstein, J. Jaynes,& G. Lruthamer (Eds.), Lateralization in the nervous system. New York: Academic Press.Google Scholar
  188. Moscovitch, M. (1977). The development of lateralization of language functions and its relation to cognitive and linguistic development: A review and some theoretical speculations. In S. J. Segalowitz& F. A. Gruber (Eds.), Language development and neurological theory. New York: Academic Press.Google Scholar
  189. Nadel, L.,& Zola-Morgan, S. (1984). Infantile amnesia: A neurobiological perspective. In M. Moscovitch (Ed.), Infant memory. New York: Plenum Press.Google Scholar
  190. Nauta, W. H. (1986a). Circuitous connections linking cerebral cortex, limbic system and corpus striatum. In B. K. Doane& K. E. Livingston (Eds.), The limbic system: Functional or- ganization and clinical disorders. New York: Raven Press.Google Scholar
  191. Nauta, W. H. (19866). A simplified perspective on the basal gan- glia and their relation to the limbic system. In B. K. Doane & K. E. Livingston (Eds.), The limbic system: Functional organization and clinical disorders. New York: Raven Press.Google Scholar
  192. Negergaard, M. (1994). Direct signaling from astrocytes to neurons in cultures of mammalian brain cells. Science, 263, 1768–1774.CrossRefGoogle Scholar
  193. Neville, H. (1984). Effects of early sensory and language experience on the development of the human brain. In J. Mehler& R. Fox (Eds.), Neonate cognition: Beyond the blooming buzzing confusion. Hillsdale, NJ: Erlbaum.Google Scholar
  194. Nilsson, L. (1978). A child is born. New York: Delacorte Press. Oates, J. (Ed.). (1979). Early cognitive development. New York: Wiley.Google Scholar
  195. O’Keefe, J. (1994). Developmental psychology. Cognitive maps in infants. Nature, 370, 57–59.CrossRefGoogle Scholar
  196. O’Keefe, J.,& Nadel, L. (1978). The hippocampus as a cognitive map. Oxford: Clarendon Press.Google Scholar
  197. Orrison, W. W., Davis, L. E., Sullivan, G. W., Mettler, E A.,& Flynn, L. R. (1990). Anatomic localization of cerebral cortical function by magnetoencephalography combined with MR imaging and CT. American Journal ofNeuro-Radiology, 11, 713–716.Google Scholar
  198. Peden, C. J., Rutherford, M. A., Sargentorri, J., Cox, I. J., Bryant, D. J.,& Dubowitz, L. M. (1993). Proton spectroscopy of the neonatal brain following hypoxic-ischemie injury. Developmental Medicine and Child Neurology, 35, 502–510.CrossRefGoogle Scholar
  199. Petersen, S. E., Fox, P. T., Posner, M. I., Mintun, M.,& Raichle, M. E. (1989). Positron emission tomographic studies of the processing of single words. Journal of Cognitive Neuroscience, 1, 153–170.CrossRefGoogle Scholar
  200. Petersen, S. E., Gorbetta, M., Miezin, F. M.,& Shulman, G. L. (1994). PET studies of parietal involvement in spatial attention: Comparison of different task types. Canadian Journal of Experimental Psychology, 48, 319–338.Google Scholar
  201. Phelps, M. E., Mazziotta, J.,& Schelbert, H. R. (1986). Positron emission tomography and autoradiography: Principles and applications for the brain and heart. New York: Raven Press.Google Scholar
  202. Piven, J., Berthier, M. L., Storkstein, S. E.,& Nehme, E. (1990). Magnetic resonance imaging evidence for a defect of cerebral cortical development in autism. American Journal of Psychiatry, 147, 734–739.Google Scholar
  203. Plante, E., Swisher, L., Vance, R.,& Rapcsak, S. (1991). MRI findings in boys with specific language impairment. Brain and Language, 41, 52–66.Google Scholar
  204. Plomin, R. A.,& Rowe, D. C. (1979). Genetic and environmental etiology of social behavior in infancy. Developmental Psychology, 15, 62–72.Google Scholar
  205. Ploog, D. (1979). Phonation, emotion, cognition with reference to the brain mechanisms involved. Ciba Foundation Symposia, 69, 79–98.PubMedGoogle Scholar
  206. Posner, M. I. (1993). Seeing the mind. Science, 262, 673–674.PubMedCrossRefGoogle Scholar
  207. Posner, M. I.,& Petersen, S. E. (1990). The attentional system of the human brain. Annual Review ofNeuroscience, 13, 25–42.CrossRefGoogle Scholar
  208. Posner, M. I.,& Rothbart, M. K. (1992). Attentional mechanisms and conscious experience. In A. D. Milner& M. D. Rugg (Eds.), The neuropsychology of consciousness (pp. 91–112 ). Orlando: Academic Press.Google Scholar
  209. Pribam, K. H. (1976). Modes of central information processing in human learning and remembering. In T. J. Tyler (Ed.), Brain and learning. Baltimore: Graylock Press.Google Scholar
  210. Raichle, M. E. (1987). Circulatory and metabolic correlations of brain function in normal humans. In V. Mountcastle, F. R. Plum,& S. Geiger (Eds.), Handbook of physiology: Sec. 1. The nervous system: Vol. V. (1,2) (pp. 643–674 ). Bethesda: American Physiological Society.Google Scholar
  211. Raichle, M. E., Fiez, J. A., Videen, T. O., MacLeod, A. M., Pardo, J. V., Fox, P. T.,& Petersen, S. E. (1994). Practice-related changes in human brain functional anatomy during nonmotor learning. Cerebral Cortex, 4, 8–26.Google Scholar
  212. Ramón y Cajal, S. (1911). Histologie du Systeme Nerveaux de l’Homme et des Vertebres. Paris: Maloine (Republished 1955, Histologie du Systeme Nerveux. Translated by L. Azoulay. Madrid: Inst. Ramón y Cajal ).Google Scholar
  213. Reichlin, S. (1974). Neuroendocrinology. In R. H. Williams (Ed.), Textbook of endocrinology. Philadelphia: Saunders.Google Scholar
  214. Reynolds, E. O., McCormick, D. C., Roth, S. C., Edwards, A. O.,& Wyatt, J. S. (1991). New non-invasive methods for the investigation of cerebral oxidative metabolism and hemodynamics in newborn infants. Annals of Medicine, 23, 681–686.Google Scholar
  215. Risberg, J.,& Ingvar, D. H. (1973). Patterns of activation in the gray matter of the dominant hemisphere. Brain, 96, 737–756.Google Scholar
  216. Riss, W. (1972). Nonspecific thalamic projection system: Intro- duction. Brain, Behavior, and Evolution, 6, 329–331.Google Scholar
  217. Roberts, E. (1986). Metabolism and nervous system disease: A challenge for our times (Part I). Metabolic Brain Disease, 1, 1–25.CrossRefGoogle Scholar
  218. Roland, P. E., Eriksson, L., Widen, L.,& Stone-Elander, S. (1989). Changes in regional cerebral oxidative metabolism induced by tactile learning and recognition in man. European Journal of Neuroscience, 1, 3–18.Google Scholar
  219. Roncagliolo, M., Benitez, J.,& Perez, M. (1994). Auditory brainstem responses of children with developmental language disorders. Developmental Medicine and Child Neurology, 36, 26–33.CrossRefGoogle Scholar
  220. Ross, B.,& Michaels, T. (1994). Clinical applications of magnetic resonance spectroscopy. Magnetic Resonance Quarterly, 10, 191–247.Google Scholar
  221. Rourke, B. P., Bakker, D. J., Fisk, J. L.,& Strang, J. D. (1983). Child neuropsychology: An introduction to theory, research, and clinical practice. New York: Guilford Press.Google Scholar
  222. Saint-Cyr, J. A., Taylor, A. E.,& Lang, A. E. (1987). Procedural learning impairment in basal ganglia disease. Journal of Clinical and Experimental Neuropsychology, 9, 280.Google Scholar
  223. Saitoh, D., Courchesne, F., Egaas, B., Lincoln, A. J.,& Schreibrion, L. (1995). Cross-sectional axia of posterior hippocampus in autistic patients with cerebral and corpus collosum abnormalities. Neurology, 45, 317–324.Google Scholar
  224. Satz, P. (1993). Brain reserve capacity on symptom onset after brain injury: A formulation and review of evidence of threshold theory. Neuropsychology, 7, 293–295.CrossRefGoogle Scholar
  225. Satz, P., Orsini, D. L., Saslow, E.,& Henry, R. (1985). The pathological left-handedness syndrome. Brain and Cognition, 4, 27–46.CrossRefGoogle Scholar
  226. Satz, P., Strauss, E., Hunter, M.,& Wada, J. (1994). Reexamination of the crowding hypothesis: Effects of age of onset. Neuropsychology; 8, 255–262.Google Scholar
  227. Scheibel, A. B. (1978). Clinical neuroanatomy lecture. Anatomy and Physiology 103: Winter-Spring Quarter 1978, UCLA School of Medicine, Los Angeles.Google Scholar
  228. Scheibel, M.,& Scheibel, A. (1961). On circuit patterns of brain stem reticular core. Annals of the New York Academy of Sciences, 89, 857–865.CrossRefGoogle Scholar
  229. Scheibel, M.,& Scheibel, A. (1963). Some neural substrates of postnatal development. In E. Hoffman (Ed.), First annual review of child development. New York: Russel] Sage Foundation.Google Scholar
  230. Scheibel, M. E.,& Scheibel, A. G. (1966). Patterns of organization in specific and nonspecific thalamic fields. In D. Purpura& M. D. Yahr (Eds.), The thalamus. New York: Columbia University Press.Google Scholar
  231. Scheibe], M. E.,& Scheibel, A. B. (1972). Input-output relations of the thalamic nonspecific system. Brain, Behavior, and Evolution, 6, 332–358.Google Scholar
  232. Scheibel, M. E.,& Scheibel, A. B. (1973). Dendrite bundles as sites for central program: An hypothesis. International Journal of Neuroscience, 6, 195–202.Google Scholar
  233. Schonhaut, S.,& Satz, P. (1983). Prognosis for children with learning disabilities: A review of follow-up studies. In M. Rutter (Ed.), Developmental neuropsychiatry. New York: Guilford Press.Google Scholar
  234. Schulte, F. J. (1974). The neurological development of the neonate. In J. A. Davis& J. Dobbing (Eds.), Scientific foundation of pediatrics. Philadelphia: Saunders.Google Scholar
  235. Segalowitz, S.,& Chapman, J. (1980). Cerebral asymmetry for speech in neonates: A behavioral measure. Brain Language, 9, 281–288.Google Scholar
  236. Seines, D. A.,& Whitaker, H. A. (1976). Morphological and functional development of the auditory system. In R. W. Rieber (Ed.), The neuropsychology of language. New York: Plenum Press.Google Scholar
  237. Semrud-Clikeman, M., Hynd, G. W., Novey, E. S.,& Elipulos, D. (1991). Dyslexia and brain morphology: Relationship between neuroanatomical variation and neurolinguistic tasks. Learning and Individual Differences, 3, 225–242.Google Scholar
  238. Sergent, J., Ohta, S.,& MacDonald, B. (1992). Functional neuroanatomy of face and object processing: A positron emission tomography study. Brain, 115, 15–36.Google Scholar
  239. Shulman, R. G., Blamire, A. M., Rothman, D. L.,& McCarthy, G. (1993). Nuclear magnetic resonance imaging and spectroscopy of human brain function. Proceedings of the National Academy of Sciences, USA, 90, 3127–3133.Google Scholar
  240. Siegel, L. S. (1979). Infant perceptual, cognitive, and motor behavior as predictors of subsequent cognitive and language development. Canadian Journal of Psychological Reviews, 33, 382–395.CrossRefGoogle Scholar
  241. Sips, H. J. W. A., Catsman-Berrevoets, C. E., Van Dongen, H. R., Van der Werff, P. J. J.,& Brooke, L. J. (1994). Measuring right-hemisphere dysfunction in children: Validity of two new computer tests. Developmental Medicine and Child Neurology, 36, 57–63.Google Scholar
  242. Siqueland, E. R.,& Lipsitt, L. P. (1966). Conditioned head turning in newborns. Journal of Experimental Child Psychology, 3, 356–376.PubMedCrossRefGoogle Scholar
  243. Smith, B. H.,& Sweet, W. H. (1978a). Monoaminergic regulation of central nervous system function. I. Noradrenergic systems. Neurosurgery, 3, 109–119.Google Scholar
  244. Smith, B. H.,& Sweet, W. H. (1978b). Monoaminergic regulation of central nervous system function. II. Serotonergic systems. Neurosurgery, 3, 257–272.Google Scholar
  245. Smith, D. W. (1976). Recognizable patterns of human malformation.: Genetic, embryologic and clinical aspects ( 2nd ed. ). Philadelphia: Saunders.Google Scholar
  246. Smith, O. A.,& DeVito, J. L. (1984). Central neural integration for the control of autonomic responses associated with emotion. Annual Review of Neuroscience, 7, 43–65.PubMedCrossRefGoogle Scholar
  247. Snyder, S. (1980). Brain peptides as neurotransmitters. Science, 209, 976–983.PubMedCrossRefGoogle Scholar
  248. Sperry, R. W. (1974). Lateral specialization in the surgically separated hemispheres. In F. O. Schmitt& F. G. Worden (Eds.), Neurosciences: Third study program (pp. 5–19 ). Cambridge, MA: MIT Press.Google Scholar
  249. Sperry, R. W., Gazzaniga, M. S.,& Bogen, J. E. (1969). Interhemispheric relationships: The neocortical commissures; syndromes of hemisphere disconnection. In P. J. Vinken& G. W. Bruyn (Eds.), Handbook of clinical neurology (Vol. 4, pp. 273–290 ). Amsterdam: Elsevier.Google Scholar
  250. Spreen, O., Tupper, D., Risser, A., Tuokko, H.,& Edgell, D. (1984). Human developmental neuropsychologv. London: Oxford University Press.Google Scholar
  251. Squire, L. R.,& Zola-Morgan, S. (1991). The medial-temporal lobe memory system. Science, 253, 1380–1386.Google Scholar
  252. Stark, D. D.,& Bradley, W. G. (Eds.). (1992). Magnetic resonance imaging (2nd ed., Vols. 1,2). St. Louis: Mosby Year Book.Google Scholar
  253. Stehling, M. K., Mansfield, P., Ordidge, R. J., Coxon, R., Chapman, B., Blamire, A., Gibbs, P., Johnson, I. R., Symonds, E. M., Worthington, B. S., et al. (1990). Echo-planar imaging of the human fetus in utero. Magnetic Resonance in Medicine, 13, 314–318.PubMedCrossRefGoogle Scholar
  254. Stehling, M. K., Turner, R.,& Mansfield, P. (1991). Echo-planar imaging in a fraction of a second. Science, 254, 43–50.PubMedCrossRefGoogle Scholar
  255. Steriade, M., McCormick, D. A.,& Sejnowski, T. J. (1993). Thalamocortical oscillations in the sleeping and aroused brain. Science, 262, 679–685.Google Scholar
  256. Storm-Mathisen, J. (1979). Localization of transmitter candidates in the brain: The hippocampal formation as a model. Progress in Neurobiology, 8, 381–388.Google Scholar
  257. Stuss, D. T.,& Benson, D. F. (1986). The frontal lobes. New York: Raven Press.Google Scholar
  258. Szentagothai, J. (1975). The “module concept” in the cerebral cortex architecture. Brain Research, 95, 475–496.PubMedCrossRefGoogle Scholar
  259. Szentagothai, J. (1978). The Ferrier Lecture. The neuron network of the cerebral cortex: A functional interpretation. Proceedings of the Royal Society of London, 201, 219–248.PubMedCrossRefGoogle Scholar
  260. Szentagothai, J.,& Arbib, M. A. (1974). Conceptual models of neural organization. Neurosciences Research Program Bulletin, 12, 307–501.Google Scholar
  261. Taylor, D. (1969). Differential rates of cerebral maturation between sexes and between hemispheres. Lancet, 2, 140–142.PubMedCrossRefGoogle Scholar
  262. Taylor, H. G., Fletcher, J. M.,& Satz, P. (1984). Neuropsychological assessment of children. In L. Halpern& G. Goldstein (Eds.), Handbook of psychological assessment. Elmsford, NY: Pergamon Press.Google Scholar
  263. Thach, W. T., Goodkin, H. P.,& Keating, J. G. (1992). The cerebellum and the adaptive coordination of movement. Annual Review of Neuroscience, 15, 403–442.CrossRefGoogle Scholar
  264. Tulving, E. (1985). On the classification problem in learning and memory. In L. Nilsson& T. Archer (Eds.), Perspectives on learning and memory. Hillsdale, NJ: Erlbaum.Google Scholar
  265. Tzika, A. A., Vigneron, D. B., Ball, W. S., Dunn, R. S.,& Kirks, D. R. (1993). Localized proton MR spectroscopy of the brain in children. Journal of Magnetic Resonance Imaging, 3, 719–729.CrossRefGoogle Scholar
  266. Valk, J.,& Van der Knapp, M. S. (1989). White matter and myelin. In J. Valk& M. S. Van der Knapp (Eds.), Magnetic resonance of myelin, myelination, and myelin disorders (pp. 9–21 ). Berlin: Springer-Verlag.CrossRefGoogle Scholar
  267. Van de Bor, M., Den-Ouden, L.,& Guit, G. L. (1992). Value of cranial ultrasound and magnetic resonance imaging in predicting neurodevelopmental outcome in preterm infants. Pediatrics, 90, 196–199.Google Scholar
  268. Vohr, B. R., Coll, C. E., Lobato, D., Yunis, K. A., O’Dea, C.,& Oh, W. (1991). Neurodevelopmental and medical status of low birth weight survivors of broncho-pulmonary dysphasia at 10–12 years of age. Developmental Medicine and Child Neurology, 33, 690–697.Google Scholar
  269. Vygotsky, L. S. (1974). The problem of age-periodization of child development (translated by A. Zender& B. F. Zen-der). Human Development, 17, 24–40.CrossRefGoogle Scholar
  270. Vygotsky, L. S. (1980). Mind in society: The development of higher psychological process (edited by M. Coles, V. John-Steiner, S. Scribner,& E. Souberman). Cambridge, MA: Harvard University Press.Google Scholar
  271. Wang, J. Z., Kaufman, L.,& Williamson, S. J. (1993). Imaging regional changes in the spontaneous activity of the brain: An extension of the minimum-norm least-squares estimate. Encephalography and Clinical Neurophysiology, 86, 36–50.Google Scholar
  272. Warren, J. M.,& Akert, K. (Eds.) (1964). The frontal granular cortex and behavior. New York: McGraw-Hill.Google Scholar
  273. Weisberg, L. A., Strub, R. L.,& Garcia, C. A. (1989). Neurological disorders of childhood. In L. A. Weisberg, R. L. Strub,& C. A. Garcia (Eds.), Essentials of clinical neurology ( 2nd ed. ). Rockville, MD: Aspen.Google Scholar
  274. Wertsch, J. V. (1979). The regulation of human action and the given new organization of private speech. In G. Zivin (Ed.), The development of self-regulation through private speech. New York: Wiley.Google Scholar
  275. Witelson, S. (1977). Early hemispheric specialization and interhemispheric plasticity: An empirical and theoretical review. In S. J. Segalowitz& F. A. Gruber (Eds.), Language development and neurological theory. New York: Academic Press.Google Scholar
  276. Witelson, S. F. (1985). On hemispheric specialization and cerebral plasticity from birth: Mark II. In C. Best (Ed.), Hemispheric function and collaboration in the child (pp. 33–85 ). New York: Academic Press.Google Scholar
  277. Witelson, S.,& Kigar, D. (1992). Sylvian fissure morphology and asymmetry in men and women: Bilateral differences in relation to handedness in men. Journal of Comparative Neurology, 323, 326–340.Google Scholar
  278. Witelson, S.,& Pallie, W. (1973). Left hemisphere specialization for language in the newborn. Brain, 96, 641–646.Google Scholar
  279. Wong, V.,& Wong, S. N. (1991). Brainstem auditory evoked potential study in children with autistic disorder. Journal of Autism and Developmental Disorders, 21, 329–340.CrossRefGoogle Scholar
  280. Yakovlev, P. I. (1962). Morphological criteria of growth and maturation of the nervous system in man. Research Publications, Association for Research in Nervous and Mental Diseases, 39, 3.Google Scholar
  281. Yakovlev, P. I.,& Lecours, A. R. (1967). The myelogenetic cycles of regional maturation of the brain. In A. Minkowski (Ed.), Regional development of the brain. Oxford: Blackwell.Google Scholar
  282. Zimmerman, R. A., Bilaniuk, L. T.,& Grossman, R. I. (1983). Computed tomography in migratory disorders of human brain development. Neuroradiology, 25, 257–269.Google Scholar
  283. Zimmerman, R. A., Bilaniuk, L. T.,& Gusnard, D. A. (1992). Pediatric cerebral anomalies. In D. D. Stark& W. G. Bradley (Eds.), Magnetic resonance imaging ( 2nd ed. ). St. Louis: Mosby-Year Book.Google Scholar
  284. Zola-Morgan, S.,& Squire, L. R. (1993). Neuroanatomy of memory. Annual Review of Neuroscience, 16, 547–564.CrossRefGoogle Scholar
  285. Zucker, R. S.,& Lando, L. (1986). Mechanism of transmitter release: Voltage hypothesis and calcium hypothesis. Science, 231, 574–579.Google Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Lawrence V. Majovski
    • 1
  1. 1.Department of Psychiatry and Behavioral SciencesUniversity of Washington School of MedicineSeattleUSA

Personalised recommendations