Development of the Child’s Brain and Behavior

  • Bryan Kolb
  • Bryan Fantie
Part of the Critical Issues in Neuropsychology book series (CINP)


Perhaps the central issue in neuropsychology over the past 100 years has been the question of how psychological functions are represented in the brain. At the turn of the century, the debate was largely whether or not functions were actually localized in the cortex. Although today this is no longer a subject of major discussion, the general problem of determining what is localized in the cortex remains. One way to examine this issue is to look at the way function and structure emerge in the developing child.


Frontal Lobe Language Development Developmental Dyslexia Radial Glia Cortical Development 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Ackerly, S. S. (1964). A case of prenatal bilateral frontal lobe defect observed for thirty years. In J. M. Warren& K. Ackert (Eds.), Frontal granular cortex and behavior (pp. 192–218 ). New York: McGraw—Hill.Google Scholar
  2. Arlin, P. K. (1975). Cognitive development in adulthood: A fifth stage? Developmental Psychology, 11(5), 602–606.Google Scholar
  3. Banich, M. T., Cohen-Levine, S., Kim, H., & Huttenlocher, P. (1990). The effects of developmental factors on I.Q. in hemiplegic children. Neuropsychologia, 28,35–47. Google Scholar
  4. Bergstrom, R. M. (1969). Electrical parameters of the brain during ontogeny. In R. J. Robinson (Ed.), Brain and early behavior (pp. 15–37 ). New York: Academic Press.Google Scholar
  5. Berry, M. (1982). Cellular differentiation: Development of dendritic arborizations under normal and experimentally altered conditions. Neurosciences Research Program Bulletin, 20 (4), 451–461.PubMedGoogle Scholar
  6. Caplan, P. J.,& Kinsbourne, M. (1976). Baby drops the rattle: Asymmetry of duration of grasp by infants. Child Development, 47, 532–534.Google Scholar
  7. Carey, S. (1984). Cognitive development: The descriptive problem. In M. S. Gazzaniga (Ed.), Handbook of cognitive neuroscience (pp. 37–66 ). New York: Plenum Press.Google Scholar
  8. Carey, S., Diamond, R.,& Woods, B. (1980). Development of face recognition-A maturational component? Developmental Psychology, 16(6), 257–269.Google Scholar
  9. Case, R. (1992). The role of the frontal lobes in the regulation of cognitive development. Brain and Cognition, 20, 51–73.PubMedCrossRefGoogle Scholar
  10. Caveness, W. F. (1969). Ontogeny of focal seizures. In H. H. Jasper, A. A. Ward, Jr.,& A. Pope (Eds.), Basic mechanisms of the epilepsies (pp. 517–534 ). Boston: Little, Brown.Google Scholar
  11. Caviness, V. S., Jr. (1982). Development of neocortical afferent systems: Studies in the reeler mouse. Neurosciences Research Program Bulletin, 20 (4), 560–569.PubMedGoogle Scholar
  12. Caviness, V. S.,& Rakic, P. (1978). Mechanisms of cortical development: A view from mutations in mice. Annual Review of Neuroscience, 1, 297–326.PubMedCrossRefGoogle Scholar
  13. Caviness, V. S., Jr.,& Sidman, R. L. (1973). Time of origin of corresponding cell classes in the cerebral cortex of normal and reeler mutant mice: An autoradiographic analysis. Journal of Comparative Neurology, 148, 141–152.Google Scholar
  14. Caviness, V. S.,& Williams, R. S. (1979). Cellular pathology of developing human cortex. Research Publications of the Association for Research in Nervous and Mental Diseases, 57, 69–98.Google Scholar
  15. Chi, J. G., Dooling, E. C.,& Gilles, F. H. (1977). Left-right asymmetries of the temporal speech areas of the human fetus. Archives of Neurology, 34, 346–348.Google Scholar
  16. Chugani, H. T.,& Phelps, M. E. (1986). Maturational changes in cerebral function in infants determined by 8FDG positron emission tomography. Science, 231, 840–843.PubMedCrossRefGoogle Scholar
  17. Conel, J. L. (1939–1967). The postnatal development of the human cerebral cortex (Vols. I-VIII). Cambridge, MA: Harvard University Press.Google Scholar
  18. Cowan, W. M. (1979). The development of the brain. Scientific American, 241, 112–133.CrossRefGoogle Scholar
  19. Coyle, J. T. (1982). Development of neurotransmitters in the neocortex. Neurosciences Research Program Bulletin, 20(4), 479–491.Google Scholar
  20. Cragg, B. G. (1975). The density of synapses and neurons in normal, mentally defective and ageing human brains. Brain, 98, 81–90.PubMedCrossRefGoogle Scholar
  21. Crowell, D. H., Jones, R. H., Kapuniai, L. E.,& Nakagawa, J. K. (1973). Unilateral cortical activity in newborn humans: An early index of cerebral dominance? Science, 180, 205–208.Google Scholar
  22. Diamond, R.,& Carey, S. (1977). Developmental changes in the representation of faces. Journal of Experimental Child Psychology, 23, 1–22.CrossRefGoogle Scholar
  23. Drake, W. (1968). Clinical and pathological findings in a child with a developmental learning disability. Journal of Learning Disabilities, 1, 468–475.CrossRefGoogle Scholar
  24. Entus, A. K. (1977). Hemispheric asymmetry in processing of dichotically presented speech and nonspeech stimuli by infants. In S. J. Segalowitz& F. A. Gruber (Eds.), Language development and neurological theory (pp. 63–73 ). New York: Academic Press.Google Scholar
  25. Epstein, H. T. (1978). Growth spurts during brain development: Implications for educational policy and practice. In J. S. Chall& A. F. Mirsky (Eds.), Education and the brain (pp. 343–370 ). Chicago: University of Chicago Press.Google Scholar
  26. Epstein, H. T. (1979). Correlated brain and intelligence development in humans. In M. E. Hahn, C. Jensen,& B. C. Dudek (Eds.), Development and evolution of brain size: Behavioral implications (pp. 111–131 ). New York: Academic Press.CrossRefGoogle Scholar
  27. Eslinger, P. J.& Damasio, A. R. (1985). Severe disturbance of higher cognition after bilateral frontal lobe ablation: Patient EVR. Neurology, 35, 1731–1741.Google Scholar
  28. Flechsig, P. (1920). Anatomie des menschlichen Gehirns and Ruckenmarks. Leipzig: Thieme.Google Scholar
  29. Fletcher, J. M., Levin, H. S.,& Landry, S. H. (1984). Behavioral consequences of cerebral insult in infancy. In C. R. Almli& S. Finger (Eds.), Early brain damage (Vol. 1, pp. 189–213 ). New York: Academic Press.CrossRefGoogle Scholar
  30. Galaburda, A. M.,& Eidelberg, D. (1982). Symmetry and asymmetry in the human posterior thalamus. II. Thalamic lesions in a case of development dyslexia. Archives of Neurology, 39, 333–336.Google Scholar
  31. Galaburda, A. M.,& Kemper, T. L. (1979). Cytoarchitectonic abnormalities in developmental dyslexia: A case study. Annals of Neurology, 6, 94–100.Google Scholar
  32. Geschwind, N.,& Galaburda, A. M. (1985). Cerebral lateralization: Biological mechanisms, associations, and pathology. 1. A hypothesis and a program for research. Archives of Neurology, 42, 428–459.Google Scholar
  33. Gibson, K. R. (1977). Brain structure and intelligence in macaques and human infants from a Piagetian perspective. In S. Chevalier-Skolnikoff& F. E. Poirer (Eds.), Primate biosocial development: Biological, social, and ecological determinants (pp. 113–157 ). New York: Garland.Google Scholar
  34. Goldman, P. S. (1974). An alternative to developmental plasticity: Heterology of CNS structures in infants and adults. In D. G. Stein, J. J. Rosen,& N. Butters (Eds.), Plasticity and recovery of function in the central nervous system (pp. 149–174 ). New York: Academic Press.Google Scholar
  35. Goldman, P. S.,& Galkin, T. W. (1978). Prenatal removal of frontal association cortex in the fetal rhesus monkey: Anatomical and functional consequences in postnatal life. Brain Research, 152, 451–485.Google Scholar
  36. Goldman-Rakic, P. S.,& Brown, R. M. (1981). Regional changes of monoamines in cerebral cortex and subcortical structures of aging rhesus monkeys. Neuroscience, 6, 177–187.Google Scholar
  37. Goldman-Rakic, P. S.,& Brown, R. M. (1982). Postnatal development of monoamine content and synthesis in the cerebral cortex of rhesus monkeys. Developmental Brain Research, 4, 339–349.Google Scholar
  38. Goldman-Rakic, P. S., Isseroff, A., Schwartz, M. L.,& Bug-bee, N. M. (1983). The neurobiology of cognitive development. In P. Mussen (Ed.), Handbook of child psychology: Biology and infancy development (pp. 281–344 ). New York: Wiley.Google Scholar
  39. Grattan, L. M.,& Eslinger, P. J. (1992). Long-term psychological consequences of childhood frontal lobe lesion in patient DT. Brain and Cognition, 20, 185–195.PubMedCrossRefGoogle Scholar
  40. Greenough, W. T. (1976). Enduring brain effects of differential experience and training. In M. R. Rosenzweig& E. L. Bennett (Eds.), Neural mechanisms of learning and memory (pp. 255–278 ). Cambridge, MA: MIT Press.Google Scholar
  41. Hebb, D. O. (1949). Organization of behavior. New York: Wiley.Google Scholar
  42. Hécaen, H. (1976). Acquired aphasis in children and the ontogenesis of hemispheric functional specialization. Brain and Language, 3, 114–134.PubMedCrossRefGoogle Scholar
  43. Hubel, D. H.,& Wiesel, T. N. (1970). The period of susceptibility to the physiological effects of unilateral eye closure in kittens. Journal of Physiology (London), 206, 419–436.Google Scholar
  44. Huttenlocher, P. R. (1979). Synaptic density in human frontal cortex-Developmental changes and effects of aging. Brain Research, 163, 195–205.PubMedCrossRefGoogle Scholar
  45. Huttenlocher, P. R. (1984). Synapse elimination and plasticity in developing human cerebral cortex. American Journal of Mental Deficiency, 88, 488–496.PubMedGoogle Scholar
  46. Huttenlocher, P. R. (1990). Morphometric study of human cerebral cortex development. Neuropsychologia, 28, 517–527. Ingram, D. (1975). Motor asymmetries in young children. Neuropsychologia, 13, 95–102.Google Scholar
  47. Jacobsen, M. (1978). Developmental neurobiology ( 2nd ed. ). New York: Plenum Press.Google Scholar
  48. Juraska, J. (1990). The structure of the rat cerebral cortex: Effects of gender and environment. In B. Kolb& R. Tees (Eds.), Cerebral cortex of the rat (pp. 483–506 ). Cambridge, MA: MIT Press.Google Scholar
  49. Kennard, M. A. (1936). Age and other factors in motor recovery from precentral lesions in monkeys. American Journal of Physiology, 115, 138–146.Google Scholar
  50. Kennard, M. A. (1940). Relation of age to motor impairment in man and in subhuman primates. Archives of Neurology and Psychiatry, 44, 377–397.CrossRefGoogle Scholar
  51. Kimura, D. (1963). Speech lateralization in young children as determined by an auditory test. Journal of Comparative and Physiological Psychology, 56, 899–902.PubMedCrossRefGoogle Scholar
  52. Knox, C.,& Kimura, D. (1970). Cerebral processing of nonverbal sounds in boys and girls. Neuropsychologia, 8, 227–237.Google Scholar
  53. Kolb, B. (1987). Factors affecting recovery from early cortical damage in rats. 1. Differential behavioral and anatomical effects of frontal lesions at different ages of neural maturation. Behavioral Brain Research, 25, 205–220.CrossRefGoogle Scholar
  54. Kolb, B. (1995). Brain plasticity and behavior. Hillsdale, NJ: Lawrence Erlbaum.Google Scholar
  55. Kolb, B.,& Fantie, B. (1989). Development of the child’s brain and behavior. In C. R. Reynolds& E. Fletcher-Janzen (Eds.), Handbook of clinical child neuropsychology (pp. 17–39 ). New York: Plenum Press.Google Scholar
  56. Kolb, B.,& Gibb, R. (1993). Possible anatomical basis of recovery of function after neonatal frontal lesions in rats. Behavioral Neuroscience, 107, 799–811.Google Scholar
  57. Kolb, B.,& Taylor, L. (1981). Affective behavior in patients with localized cortical excisions: Role of lesion site and side. Science, 214, 89–91.Google Scholar
  58. Kolb, B.,& Taylor, L. (1990). Neocortical substrates of emotional behavior. In N. L. Stein, B. Levethal,& T. Trabasso (Eds.), Psychological and biological approaches to emotion (pp. 115–144 ). Hillsdale, NJ: Erlbaum.Google Scholar
  59. Kolb, B.,& Whishaw, I. Q. (1985). Neonatal frontal lesions in hamsters impair species-typical behaviors and reduce brain weight and neocortical thickness. Behavioral Neuroscience, 99, 691–706.Google Scholar
  60. Kolb, B.,& Whishaw, I. Q. (1996). Fundamentals of human neuropsychology ( 4th ed. ). New York: Freeman.Google Scholar
  61. Kolb, B., Wilson, B.,& Taylor, L. (1992). Developmental changes in the recognition and comprehension of facial expression: Implications for frontal lobe function. Brain and Cognition, 20, 74–84.Google Scholar
  62. Lecours, A. R. (1975). Myelogenetic correlates of the development of speech and language. In E. H. Lenneberg& E. Lenneberg (Eds.), Foundations of language development: A multidisciplinary approach (Vol. 1, pp. 121–135 ). New York: Academic Press.Google Scholar
  63. Lenneberg, E. H. (1967). Biological foundations of language. New York: Wiley.Google Scholar
  64. Lezak, M. D. (1995). Neuropsychological assessment ( 3rd ed. ). New York: Academic Press.Google Scholar
  65. Marcel, T.,& Rajan, P. (1975). Lateral specialization for recognition of words and faces in good and poor readers. Neuropsychologia, 13, 489–497.PubMedCrossRefGoogle Scholar
  66. Marin-Padilla, M. (1970). Prenatal and early postnatal ontogenesis of the motor cortex: A Golgi study. 1. The sequential development of cortical layers. Brain Research, 23, 167–183.PubMedCrossRefGoogle Scholar
  67. Marin-Padilla, M. (1988). Early ontogenesis of the human cerebral cortex. In A. Peters& E. G. Jones (Eds.), Cerebral cortex (Vol. 7, pp. 1–34 ). New York: Plenum Press.CrossRefGoogle Scholar
  68. Michel, G. F. (1981). Right handedness: A consequence of infant supine head-orientation preference? Science, 212, 685–687.PubMedCrossRefGoogle Scholar
  69. Milner, B. (1964). Some effects of frontal lobectomy in man. In J. M. Warren& K. Akert (Eds.), The frontal granular cortex and behavior (pp. 313–334 ). New York: McGraw-Hill.Google Scholar
  70. Milner, B. (1974). Sparing of language function after early unilateral brain damage. Neurosciences Research Program Bulletin, 12, 213–217.PubMedGoogle Scholar
  71. Molfese, D. L.,& Molfese, V. J. (1980). Cortical responses of preterm infants to phonetic and nonphonetic speech stimuli. Developmental Psychology, 16(6), 574–581.Google Scholar
  72. Owens, R. E., Jr. (1984). Language development: An introduction. Columbus, OH: Charles E. Merrill Publishing.Google Scholar
  73. Parnavelas, J. G., Papadopoulos, G. C.,& Cavanagh, M. E. (1988). Changes in neurotransmitters during development. In A. Peters& E. G. Jones (Eds.), Cerebral cortex (Vol. 7, pp. 177–209 ). New York: Plenum Press.CrossRefGoogle Scholar
  74. Peiper, A. (1963). Cerebral function in infancy and childhood. New York: Consultants Bureau.Google Scholar
  75. Peters, M.,& Petrie, B. J. F. (1979). Functional asymmetries in the stepping reflex of human neonates. Canadian Journal of Psychology, 33, 198–200.Google Scholar
  76. Piaget, J. (1952). The origins of intelligence in children. New York: Norton.CrossRefGoogle Scholar
  77. Poliakov, G. I. (1949). Structural organization of the human cerebral cortex during ontogenetic development. In S. A. Sarkisov, I. N. Filimonov,& N. S. Preobrazenskaya (Eds.), Cytoarchitectonics of the cerebral cortex in man (pp. 33–92 ). Moscow: Medgiz (In Russian).Google Scholar
  78. Poliakov, G. I. (1961). Some results of research into the development of the neuronal structure of the cortical ends of the analyzers in man. Journal of Comparative Neurology, 117, 197–212.PubMedCrossRefGoogle Scholar
  79. Poliakov, G. I. (1965). Development of the cerebral neocortex during first half of intrauterine life. In S. A. Sarkosov (Ed.), Development of the child’s brain (pp. 22–52 ). Leningrad: Medicina. (In Russian)Google Scholar
  80. Purpura, D. P. (1974). Dendritic spine “dysgenesis” and mental retardation. Science, 186, 1126–1127.PubMedCrossRefGoogle Scholar
  81. Purpura, D. P. (1976). Structure-dysfunction relations in the visual cortex of preterm infants. In M. A. B. Braxier& F. Coceani (Eds.), Brain dysfunction in infantile febrile convulsions (pp. 223–240 ). New York: Raven Press.Google Scholar
  82. Purpura, D. P. (1982). Normal and abnormal development of cerebral cortex in man. Neurosciences Research Program Bulletin, 20 (4), 569–577.PubMedGoogle Scholar
  83. Rakic, P. (1972). Mode of cell migration to the superficial layers of fetal monkey neocortex. Journal of Comparative Neurology, 145, 61–84.PubMedCrossRefGoogle Scholar
  84. Rakic, P. (1975). Timing of major ontogenetic events in the visual cortex of the rhesus monkey. In N. A. Buchwald& M. Brazier (Eds.), Brain mechanisms in mental retardation (pp. 3–40 ). New York: Academic Press.Google Scholar
  85. Rakic, P. (1976). Prenatal genesis of connections subserving ocular dominance in the rhesus monkey. Nature, 261, 467–471.PubMedCrossRefGoogle Scholar
  86. Rakic, P. (1981). Developmental events leading to laminar and areal organization of the neocortex. In F. O. Schmitt, F. G. Worden, G. Adelman,& S. G. Dennis (Eds.), The organization of the cerebral cortex (pp. 7–8 ). Cambridge, MA: MIT Press.Google Scholar
  87. Rakic, P. (1984). Defective cell-to-cell interactions as causes of brain malformations. In E. S. Gollin (Ed.), Malformations of development-Biological and psychological sources and consequences (pp. 239–285 ). New York: Academic Press.Google Scholar
  88. Rasmussen, T.,& Milner, B. (1975). Clinical and surgical studies of the cerebral speech areas in man. In K. J. Zulch, O. Creutzfeldt,& G. C. Galbraith (Eds.), Cerebral localization (pp. 238–257 ). Berlin: Springer-Verlag.CrossRefGoogle Scholar
  89. Rasmussen, T.,& Milner, B. (1977). The role of early left-brain injury in determining lateralization of cerebral speech functions. Annals of the New York Academy of Sciences, 299, 355–369.CrossRefGoogle Scholar
  90. Robinson, R. J. (1966). Cerebral function in the newborn child. Developmental Medicine and Child Neurology, 8, 561–567.PubMedCrossRefGoogle Scholar
  91. St. James-Roberts, I. (1981). A reinterpretation of hemispherectomy data without functional plasticity of the brain. 1. Intellectual function. Brain and Language, 13, 31–53.CrossRefGoogle Scholar
  92. Segalowitz, S. J.,& Rose-Krasnor, L. (1992). The construct of brain maturation in theories of child development. Brain and Cognition, 20, 1–7.Google Scholar
  93. Sidman, R. L.,& Rakic, P. (1973). Neuronal migration, with special reference to developing human brain: A review. Brain Research, 62, 1–35.PubMedCrossRefGoogle Scholar
  94. Smith, A. (1984). Early and long-term recovery from brain damage in children and adults: Evolution of concepts of localization, plasticity, and recovery. In C. R. Almli& S. Finger (Eds.), Early brain damage: Research orientations and clinical observations (pp. 299–324 ). New York: Academic Press.CrossRefGoogle Scholar
  95. Spreen, O., Tupper, D., Risser, A., Tuokko, H.,& Edgell, D. (1984). Human developmental neuropsychology. London: Oxford University Press.Google Scholar
  96. Stewart, J.,& Kolb, B. (1994). Dendritic branching in cortical pyramidal cells in response to ovariectomy in adult female rats: Suppression by neonatal exposure to testosterone. Brain Research, 654, 149–154.Google Scholar
  97. Stuss, D. T. (1992). Biological and psychological development of executive functions. Brain and Cognition, 20, 8–23.PubMedCrossRefGoogle Scholar
  98. Sutherland, R. J., Kolb, B., Schoel, M., Whishaw, I. Q.,& Davies, D. (1982). Neuropsychological assessment of children and adults with Tourette syndrome: A comparison with learning disabilities and schizophrenia. In A. J. Freidhoff& T. N. Chase (Eds.), Gilles de la Tourette syndrome (pp. 311–322 ). New York: Raven Press.Google Scholar
  99. Taylor, H. G. (1984). Early brain injury and cognitive development. In C. R. Almli& S. Finger (Eds.), Early brain damage: Research orientations and clinical observations (pp. 325–345 ). New York: Academic Press.CrossRefGoogle Scholar
  100. Teuber, H.-L. (1975). Recovery of function after brain injury in man. Ciba Foundation Symposium, 34, 159–186.PubMedGoogle Scholar
  101. Thatcher, R. W. (1992). Cyclic cortical reorganization during early childhood. Brain and Cognition, 20, 24–50.PubMedCrossRefGoogle Scholar
  102. Turkewitz, G. (1977). The development of lateral differentiation in the human infant. Annals of the New York Academy of Sciences, 299, 213–221.CrossRefGoogle Scholar
  103. Twitchell, T. E. (1965). The automatic grasping responses of infants. Neuropsychologia, 3, 247–259.CrossRefGoogle Scholar
  104. Vargha-Khadem, F.,& Polkey, C. E. (1992). A review of cognitive outcome after hemidecortication in humans. In F. D. Rose& D. A. Johnson (Eds.), Recovery from brain damage (pp. 137–168 ). New York: Plenum Press.CrossRefGoogle Scholar
  105. Vargha-Khadem, F., Watters, G.,& O’Gorman, A. M. (1985). Development of speech and language following bilateral frontal lesions. Brain and Language, 37, 167–183.Google Scholar
  106. Wada, J. A., Clarke, R.,& Hamm, A. (1975). Cerebral hemispheric asymmetry in humans: Cortical speech zones in 100 adult and 100 infant brains. Archives of Neurology 32, 239–246.Google Scholar
  107. Werker, J. F.,& Tees, R. C. (1992). The organization and reorganization of human speech perception. Annual Review of Neuroscience, 15, 377–402.CrossRefGoogle Scholar
  108. Whishaw, I. Q.,& Kolb, B. (1984). Neuropsychological assessment of children and adults with developmental dyslexia. In R. N. Malatesha& H. A. Whitaker (Eds.), Dyslexia: A global issue (pp. 375–404 ). The Hague: Nijhoff.CrossRefGoogle Scholar
  109. Williams, R. S., Ferrante, R. J.,& Caviness, V. S., Jr. (1975). Neocortical organization in human cerebral malformation: A Golgi study. Neuroscience Abstracts, 1, 776.Google Scholar
  110. Witelson, S. F. (1977). Early hemisphere specialization and interhemisphere plasticity: An empirical and theoretical review. In S. J. Segalowitz& F. A. Gruber (Eds.), Language development and neurological theory (pp. 213–287 ). New York: Academic Press.Google Scholar
  111. Woods, B. T. (1980). The restricted effects of right-hemisphere lesions after age one; Wechsler test data. Neuropsychologia, 18, 65–70.PubMedCrossRefGoogle Scholar
  112. Woods, B. T.,& Teuber, H.-L. (1973). Early onset of complementary specialization of cerebral hemispheres in man. Transactions of the American Neurological Association, 98, 113–117.Google Scholar
  113. Yakovlev, P. E.,& Lecours, A.-R. (1967). The myelogenetic cycles of regional maturation of the brain. In A. Minkowski (Ed.), Regional development of the brain in early life. Oxford: Blackwell.Google Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Bryan Kolb
    • 1
  • Bryan Fantie
    • 2
  1. 1.Department of PsychologyUniversity of LethbridgeLethbridgeCanada
  2. 2.Department of PsychologyAmerican UniversityUSA

Personalised recommendations