Skip to main content

Laser Sources for Confocal Microscopy

  • Chapter
Handbook of Biological Confocal Microscopy

Abstract

In this chapter we describe the characteristic properties of a number of lasers commonly used in fluorescence microscopy. We concentrate on the characteristics of lasers in relation to their use as an illumination source. Lasers have a number of unique properties compared to other sources emitting electromagnetic radiation, such as arc lamps, which make them an almost ideal light source for use in confocal microscopy. These properties are:

  • High degree of monochromaticity

  • Small divergence

  • High brightness

  • High degree of spatial and temporal coherence

  • Plane polarized emission (for many types)

  • A Gaussian beam profile (can be obtained by special optics)

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adhav, R.S., January, 1986, Data sheet 714. Sum frequency mixing and second harmonic generation, Quantum Technology, Inc., Lake Mary, FL (407–323-7750).

    Google Scholar 

  • Alcala, J.R., Gratton, E., and Jameson, D.M., 1985, A multifrequency phase fluorometer using the harmonic content of a mode-locked laser, Anal. Instrum. 14:225–250.

    Article  CAS  Google Scholar 

  • Anderson, S.G., 1993, Commercial OPO produces high-energy tunable output, Laser Focus World April: 16–22.

    Google Scholar 

  • Anderson, S.G., 1994a, Narrow-linewidth OPO uses extraordinary resonance, Laser Focus World April: 15–18.

    Google Scholar 

  • Anderson, S.G., 1994b, New material promises tunable UV output, Laser Focus World May:20–23.

    Google Scholar 

  • ANSI Z-136.1–1992, ANSI Standard for the safe use of lasers, Laser Institute of America, Orlando, FL.

    Google Scholar 

  • Arecchi, F.T., and Schultz-Dubois, E.O., 1972, Laser Handbook, Vol. 1, North-Holland, Amsterdam.

    Google Scholar 

  • Art, J.J., and Goodman, M.B., 1993, Rapid scanning confocal microscopy, Methods Cell Biol 38:53–58.

    Google Scholar 

  • Ashkin, A., and Dziedzic, J.M., 1987, Optical trapping and manipulation of viruses and bacteria, Science 235:1517.

    Article  PubMed  CAS  Google Scholar 

  • Austin, L., Scaggs, M., Sowada, U., and Kahlert, H.-J., 1989, A UV beam-delivery system designed for excimers, Photonics Spectra May:89–96.

    Google Scholar 

  • Baer, T.M., 1986, Diode laser pumping of solid state lasers, Laser Focus/Electro Optics June: 82–92.

    Google Scholar 

  • Bains, S., 1993, Holographic optics for when less is more, Laser Focus World April:151–154.

    Google Scholar 

  • Bass, M., and Stitch, M.L., 1985, Laser Handbook, Vol. 5, North-Holland, Amsterdam.

    Google Scholar 

  • Beausoleil, R.G., 1992, Highly efficient second harmonic generation, Lasers & Optronics May: 17–21.

    Google Scholar 

  • Bertolotti, M., 1983, Masers and Lasers: An Historical Approach, Adam Hilger, Bristol.

    Google Scholar 

  • Beverloo, H.B., van Schadewijk, A., van Gelderen-Boele, S., and Tanke, H.J., 1990, Inorganic phosphors as new luminescent labels for immunocyto-chemistry and time-resolved microscopy, Cytometry 11:784–792.

    Article  PubMed  CAS  Google Scholar 

  • Birmingham, J.J., and Garland, P.B., Laser spectroscopic measurements of triplet-state lifetimes in both time and frequency domains, SPIE 909:370–376.

    Google Scholar 

  • Bloom A.L., 1968, Gas Lasers, Wiley, New York.

    Google Scholar 

  • Borst, W.L., Gangopadhyay, S., and Pleil, M.W., 1987, Fast analog technique for determining fluorescence lifetimes of multicomponent materials by pulsed laser, SPIE 743:15–23.

    Article  CAS  Google Scholar 

  • Brelje, T.C., Wessendorf, M. W., and Sorenson, R.L., 1993, Multicolor laser scanning confocal immunofluorescence microscopy: Practical application and limitations, Methods Cell Biol 38:120–123.

    Google Scholar 

  • Brown, D.C., 1981, High-Peak-Power Nd-Glass Laser Systems, Springer-Verlag, Berlin.

    Book  Google Scholar 

  • Buican, T.N., Smyth, M.J., Crissman, C.C., Salzman, G.C., Stewart, C.C., and Martin, J.C., 1987, Automated single-cell manipulation and sorting by light trapping, Appl Optics 26:5311–5316.

    Article  CAS  Google Scholar 

  • Bürgin, C.D., 1988, A guide for eyeware for protection from laser light, LLL-TB-87, LLNL, P.O. Box 808, Livermore, CA.

    Google Scholar 

  • Butcher, S., 1994, Optical parametric oscillators open new doors to researchers, Photonics Spectra May: 133–138.

    Google Scholar 

  • Buurman, E.P., Sanders, R., Draaijer, A., Gerritsen, H.C., van Veen, J.J.F., Houpt, D.M., and Levine, Y.K., 1992a, Fluorescence lifetime imaging using a confocal laser scanning microscope, Scanning 14:155–159.

    Article  Google Scholar 

  • Buurman, E.P., Sanders, R., Draaijer, A., Gerritsen, H.C., and van Veen, J.J.F., 1992b, Distribution of ions in living single cells determined by confocal fluorescence lifetime imaging, 4th International Conference on Analytical Biochemistry, Proceedings of Anabiotec.

    Google Scholar 

  • Cannon, J., and Armas. M., 1993, Ultraviolet lasers expand uses of confocal microscopes, Laser Focus World January: 99–104.

    Google Scholar 

  • Carts, Y.A., 1994, Gradient-index lens tames spherical aberrations., Laser Focus World January: 142–143.

    Google Scholar 

  • Casperson, L.W., 1994, How phase plates transform and control laser beams, Laser Focus World May:223–228.

    Google Scholar 

  • Chenard, F., 1994, New applications abound for rare-earth doped fibers, Photonics Spectra May: 124–130.

    Google Scholar 

  • Clegg, R.M., Feddersen, B.A., Gratton, E., and Jovin, T., 1992, Time-resolved imaging fluorescence microscopy, SPIE Proc. 1640:448–460.

    Article  Google Scholar 

  • Cogswell, C.J., Hamilton, D.K., and Sheppard, C.J.R., 1992a, True color confocal reflection microscope: 442 He-Cd, 532 of freq. doubled Nd-YAG with 633 nm from He-Nelaser, J. Microsc. 165:49–60.

    Article  Google Scholar 

  • Cogswell, C.J., Hamilton, D.K., and Sheppard, C.J.R., 1992b, Colour confocal reflection microscopy used red, green and blue lasers, J. Microsc. 165:103–117.

    Article  Google Scholar 

  • Connor Davenport, C.M., and Gmitro, A.F., 1992, Angioscopic fluorescence imaging system, SPIE Proc. 1649:192–202.

    Article  Google Scholar 

  • Cundall, R.B., and Dale, R.E., 1983, Time-Resolved Fluorescence Spectroscopy in Biochemistry and Biology, Plenum Press, New York.

    Google Scholar 

  • Cunningham, R., 1993, Vertical-cavity diode lasers, Lasers & Optronics December: 19–20.

    Google Scholar 

  • Day, T., and Li Dessau, K.D., 1994, Narrow band tunable external-cavity diode lasers offer new tools for researchers, Photonics Spectra March:99–103.

    Google Scholar 

  • Demtröder, W., 1982, Laser Spectroscopy: Basic Concepts and Instrumentation, Springer-Verlag, Berlin.

    Google Scholar 

  • Denk, W, Strickler, J.H., and Webb, W.W., 1990, Two-photon laser scanning fluorescence microscopy, Science 248:73–76.

    Article  PubMed  CAS  Google Scholar 

  • Draaijer, A., and Houpt, P.M., 1988, A standard video-rate confocal laser-scanning reflection and fluorescence microscope, Scanning 10:139–145.

    Article  Google Scholar 

  • Driscoll, W.G., and Vaughan W., 1978, Handbook of Optics, McGraw-Hill, New York.

    Google Scholar 

  • Duling, I.N., III, 1993, Compact fiber soliton lasers produce ultrashort pulses, Laser Focus World April:213–220.

    Google Scholar 

  • Dunning, F.B., 1978, Tunable-ultraviolet generation by sum-frequency mixing, Laser Focus Magazine May:72–76.

    Google Scholar 

  • Eden, J.G., 1988, UV and VUV lasers: Prospects and applications, Optics News April: 14–27.

    Google Scholar 

  • Ellis, G.W., 1979, A fiber-optic phase-randomizer for microscope illumination by a laser, J. Cell Biol. 83:303a.

    Google Scholar 

  • Ellis, G. W., 1988, Scanned aperture light microscopy, in: Proceedings of the 46th Annual Meeting of EMSA., San Francisco Press, San Francisco, pp. 48–49,.

    Google Scholar 

  • Erlandson, A.C., and Powell, H.T., 1991, Ten thousand flashlamps will drive the most-powerful laser, Laser Focus World August:95–100.

    Google Scholar 

  • Feddersen, B., vandeVen, M., and Gratton, E., 1989a, Parallel wavelength acquisition of fluorescence decay with picosecond resolution using an optical multichannel analyzer, Biophys. J. 55:190a.

    Google Scholar 

  • Feddersen, B., Piston, D.W., and Gratton, E., 1989b, Digital parallel acquisition in frequency domain fluorimetry, Rev. Sci. Instrum. 60:2929–2936.

    Article  Google Scholar 

  • Forrest, G.T., 1990, Laser tweezers manipulate cells, Laser Focus World, November 25.

    Google Scholar 

  • Forrester, S., 1994a, DC/DC converters: Theory of operation, Part 1, Sensors January:28–35.

    Google Scholar 

  • Forrester, S., 1994b, DC/DC converters: Theory of operation, Part 2, Sensors February:64–69.

    Google Scholar 

  • Franceschini, M.A., Fantini, S., and Gratton, E., 1994, LED’s in frequency domain spectroscopy of tissues, SPIE Proc. 2135:300–306.

    Article  Google Scholar 

  • Frederickson, C., and Kintz, G., 1992, New applications for diode-pumped lasers, Lasers & Optronics Ref. Handbook September: 163–165.

    Google Scholar 

  • Fricker, M.D., and White, N.S., 1992, Wavelength considerations in confocal microscopy of botanical specimens, J. Microsc. 166:29–42.

    Article  Google Scholar 

  • Friebele, E.J., and Kersey, A.D., 1994, Fiberoptic sensors measure up for smart structures, Laser Focus World May: 165–171.

    Google Scholar 

  • Gibson, J., 1988, Laser cooling water. The key to improved reliability, Photonics Spectra November: 117–124.

    Google Scholar 

  • Gibson, J., 1989, Laser water cooling loops deserve attention, Laser Focus World April: 123–129.

    Google Scholar 

  • Goldman, R.D., 1993, Air-to-liquid closed-loop cooling system meet the cost performance goals of today’s laser market, Lasers & Optronics February: 15–17.

    Google Scholar 

  • Gratton, E., Feddersen, B., and vandeVen, M., 1990, Parallel acquisition of fluorescence decay using array detectors, SPIE Proc. 1204:21–25.

    Article  Google Scholar 

  • Günther, A.H., 1993, Optics damage constraints laser design and performance, Laser Focus World February:83–87.

    Google Scholar 

  • Hammerling, P., Budgor, A.B. and Pinto, A., 1985, Tunable solid-state lasers, in: Proceedings of the First International Conference, La Jolla, CA, June 13–15, 1984, Springer-Verlag, Berlin, Springer Series in Optical Sciences, vol. 47.

    Google Scholar 

  • Hard, R., Zeh, R.D., and Allen, R.D., 1977, Phase-randomized laser illumination for microscopy, J. Cell Sci. 23:335–343.

    PubMed  CAS  Google Scholar 

  • Hecht, E., and Zajac A., 1977, Optics, 2nd Ed., Addison-Wesley, Reading, MA.

    Google Scholar 

  • Hecht, J., 1992, Ion lasers deliver power at visible and UV wavelengths., Laser Focus World December:97–105.

    Google Scholar 

  • Hecht, J., 1993a, Laser action in fibers promises a revolution in communications, Laser Focus World February: 7 5–81.

    Google Scholar 

  • Hecht, J., 1993b, Nitrogen lasers produce ultraviolet light simply, Laser Focus World May:87–91.

    Google Scholar 

  • Hecht, J., 1993c, HeCd lasers offer economical blue and ultraviolet light, Laser Focus World August:67–71.

    Google Scholar 

  • Hecht, J., 1993d, Copper-vapor lasers find specialized applications, Laser Focus World October:99–103

    Google Scholar 

  • Hell, S., Witting, S., Schickfus, M.V., Wijnaendts van Resandt, A.W., Hunklin-ger, S., Smolka, E., and Neiger M., 1991, A confocal beam scanning white-light microscope, J. Microsc. 163:179–187.

    Article  Google Scholar 

  • Herrmann, J., and Wilhelmi, B., 1987, Lasers for Ultrashort Light Pulses, North-Holland, Amsterdam.

    Google Scholar 

  • Higgins, T.V., 1992, Nonlinear crystals: Where the colors of the rainbow begin, Laser Focus World January: 125–133.

    Google Scholar 

  • Hobbs, J.R., 1993a, Semiconductor lasers diversify, Laser Focus World April: 16.

    Google Scholar 

  • Hobbs, J.R., 1993b, Frequency-doubled ion laser produces UV light for resonance Raman spectroscopy, Laser Focus World May: 16–18.

    Google Scholar 

  • Hobbs, J.R., 1994, Offset-plane mirrors transform laser beams, Laser Focus World May:46–50.

    Google Scholar 

  • Hodgson, D.J., 1994, How power-supply selection can improve laser-diode performance, Laser Focus World January: 129–137.

    Google Scholar 

  • Huth, B.G., and Kuizenga, D., 1987, Green light from doubled Nd-YAG lasers. Lasers & Optronics October:59–61.

    Google Scholar 

  • Jovin, T.M., Arndt-Jovin, D.J., Robert-Nicoud, M., Schormann, T., Marriott, G., and Clegg, R.M. 1989, Luminescence digital imaging microscopy, Biophys. J. 55:432a.

    Article  Google Scholar 

  • Kaiser, W., 1988, Ultrashort Laser Pulses and Applications, Springer-Verlag, Berlin.

    Book  Google Scholar 

  • Kaminskii, A.A., 1981, Laser Crystals: Their Physics and Properties, (translation) (H.F. Ivey, ed.), Springer-Verlag, Berlin.

    Google Scholar 

  • Keating, S.M., Wensell, T.G., Meyer, T., and Stryer, L., 1989, Nanosecond fluorescence and emission anisotropy kinetics of fura-2 in single cells, Biophys. J. 55:518a.

    Google Scholar 

  • Kiat, L.S., Tanaka, K., Tsumanuma, T., and Sanada, K., 1992, Ultrathin single-mode imagefiber for medical usage, SPIE Proc. 1649:208–217.

    Article  Google Scholar 

  • Kinosita, K., Ashikawa, I., Hibino, M., Shigemori, M., Yoshimura, H., Itoh, H., Nagayama, K., and Ikegami, A., 1988, Submicrosecond imaging under a pulsed-laser fluorescence microscope, SPIE 909:271–277.

    Article  Google Scholar 

  • Knutson, J.R., 1988, Fluorescence detection: Schemes to combine speed, sensitivity and spatial resolution, SPIE 909:51–60.

    Article  CAS  Google Scholar 

  • Kusumi, A., Tsuji, A., Murata, M., Sako, Y., Yoshizawa, A.C., Hayakawa, T., and Ohnishi, S.-L, 1988, Development of a time-resolved microfluorime-ter with a synchroscan streak camera and its application to studies of cell membranes, SPIE 909:350–351.

    Article  Google Scholar 

  • Lakowicz, J.R., 1983, Principles of Fluorescence Spectroscopy, Plenum Press, New York.

    Book  Google Scholar 

  • Lakowicz, J.R., 1992, Fluorescence lifetime sensing generates cellular images, Laser Focus World May:60–80.

    Google Scholar 

  • Lakowicz, J.R., Szmacinski, H., Nowaczyk, K., and Johnson, M.L., 1992, Fluorescence lifetime imaging of Ca2+ using visible wavelength excitation and emission, SPIE Proc. 1640:390–404

    Article  CAS  Google Scholar 

  • Lewis, R.R., Naylor, G.A. and Kearsley, A.J., 1988, Copper vapor lasers reach high power, Laser Focus/Electro Optics April:92–96.

    Google Scholar 

  • Lin, J.T. and Chen, C., 1987, Choosing a Non-linear Crystal, Lasers & Optronics November:59–63.

    Google Scholar 

  • Littlechild, J., and Mossier, D., 1988, Knowledge of arc-lamp aging and lifetime effects can help to avoid unpleasant surprises, Laser Focus/Electro Optics November: 67–76.

    Google Scholar 

  • Marriott, G., Clegg, R.M., Arndt-Jovin, D.J., and Jovin, T.M., 1991, Time-resolved imaging microscopy, Biophys. J. 60:1374–1387.

    Article  PubMed  CAS  Google Scholar 

  • Marshall, L., 1994, Biological monitoring foreseen with ultraviolet light source, Laser Focus World April:83–87.

    Google Scholar 

  • Miller, P.J., 1991, Taming laser noise: Methods and applications, Photonics Spectra April: 183–187.

    Google Scholar 

  • Miller, P., and Hoyt, C., 1986, Turning down laser noise with power stabilizers, Photonics Spectra June: 129–134.

    Google Scholar 

  • Mollenauer, L.F., and White, J.C., 1987, Tunable Lasers, Springer-Verlag, Berlin.

    Book  Google Scholar 

  • Mooradian, A., 1993, External cavity tunable diode lasers, Lasers & Optronics May:35–37.

    Google Scholar 

  • Morgan, C.G., Mitchell, A.C., and Murray, J.G., 1992a, Fluorescence decay time imaging photon detector with a radiofrequency photon correlation system. In: Time-Resolved Laser Spectroscopy in Biochemistry II (J. Lakowicz, ed.), SPIE Proc. 1204, pp. 798–807

    Google Scholar 

  • Morgan, C.G., Mitchell, A.C., and Murray, J.G., 1992b, Prospects for confocal imaging based on nanosecond fluorescence decay times, J. Microsc. 16:49–60.

    Article  Google Scholar 

  • Mortensen, P., 1994, Solid state lasers: Russians commercialize femtosecond laser, Laser Focus World April:36–38.

    Google Scholar 

  • Muckenheim, W., Austin, L. and Basting, D., 1988, The pulsed dye laser: Today’s technology, today’s uses, Photonics Spectra June:79–84.

    Google Scholar 

  • O’Connor, D.V., and Phillips, D., 1984, Time-Correlated Single Photon Counting, Academic Press, New York.

    Google Scholar 

  • Olsen, R., 1994, Ultrafast systems move to higher power, Lasers & Optronics January: 15–16.

    Google Scholar 

  • Perry, M.D., Payne, S.A., Ditmire, T., Beach, R., Quarles, G.J., Ignatuk, W., Olson, R., and Weston, J., 1993, Better materials trigger CnLiSAF laser development, Laser Focus World September:85–92.

    Google Scholar 

  • Peuse, B., 1988, Active stabilization of ion laser resonators. Active stabilization offers advantages in several areas, Lasers & Optronics Novem-ber:61–65.

    Google Scholar 

  • Piehler, D., 1993, Upconversionprocess creates compact blue/green lasers, Laser Focus World November:95–102.

    Google Scholar 

  • Piston, D.W., Sandison, D.R., and Webb, W.W., 1992, Time-resolved fluorescence imaging and background rejection by two-photon excitation, SPIE Proc. 1640:379–389

    Article  CAS  Google Scholar 

  • Piston, D.W., Kirby, M., Cheng, H., Lederer, W.J., and Webb, W.W., 1994, Two-photon excitation fluorescence imaging of three-dimensional calcium-ion activity, Appl. Optics 33:662–669.

    Article  CAS  Google Scholar 

  • Rapp, E.W., 1988, Design your cooling system for good laser performance, Laser Focus/Electro Optics September: 65–70.

    Google Scholar 

  • Rhodes, C.K., 1983, Excimer Lasers, 2nd ed., Springer-Verlag, Berlin.

    Google Scholar 

  • Rockwell, R.J., Jr., 1986, An introduction to exposure hazards and the evaluation of nominal hazard zones, Lasers & Applications May:97–103.

    Google Scholar 

  • Rockwell Associates Inc., Cincinnati, Ohio, 1983, Laser Safety Training Manual, 6th ed.

    Google Scholar 

  • Salin, F., Squire, J., Mourou, G., and Vaillantcourt, G., 1991, Multikilohertz Ti:Al2O3 amplifier for high-power femtosecond pulses, Opt. Lett. 16:1964–1966.

    Article  PubMed  CAS  Google Scholar 

  • Schneckenburger, H., Strauss, W., Rueck, A., Seidlitz, H.K., and Wessels, J.M., 1992, Microscopic fluorescence spectroscopy and diagnosis, Opt. Eng. 31:995–999.

    Article  CAS  Google Scholar 

  • Schneider, D.J., and Williams, D.C., 1993, Fighting corrosion in laser cooling systems, Laser Focus World December: 110.

    Google Scholar 

  • Scifres, D.R., 1994, Diode lasers ride the wave of progress, Photonics Spectra January: 84–85.

    Google Scholar 

  • Sliney, D.H., 1986, Laser safety. The newest face on an old standard, Photonics Spectra April:83–96.

    Google Scholar 

  • Sliney, D.H., 1994, Laser safety concepts are changing, Laser Focus World May, 185–192.

    Google Scholar 

  • Sliney, D., and Wolbarsht, M., 1980, Safety with Lasers and Other Optical Sources: A Comprehensive Handbook, Plenum Press, New York.

    Google Scholar 

  • Smith, B., 1986, Lamps for pumping solid-state lasers: Performance and optimization, Laser Focus/Electro Optics September:58–73.

    Google Scholar 

  • Smith, K., and Lucek, J.K., 1993, Modelocked fiber lasers promise high-speed data networks, Laser Focus World October: 85–91.

    Google Scholar 

  • Snyder, J.J., and Cable, A.E., 1993, Cylindrical microlenses improve laser-diode beams, Laser Focus World, February:97–100.

    Google Scholar 

  • So, P.T.C., French T., and Gratton, E., 1994, A frequency domain time-resolved microscope using a fast-scan CCD camera, SPIE Proc. 2137:83–92.

    Article  Google Scholar 

  • Soileau, M.J., 1987, Laser-induced damage, Photonics Spectra November: 109–114.

    Google Scholar 

  • Stitch, M.L., 1979, Laser Handbook, Vol. 3, North-Holland, Amsterdam.

    Google Scholar 

  • Szarowski, D.H., Smith, K.I., Herchenroder, A., Matuszek, G., Swann, J.W., and Turner, J.N., 1992, Optimized reflection imaging in laser confocal microscopy and its application to neurobiology: Modification to the Biorad MRC-500, Scanning 14:104–111.

    Article  Google Scholar 

  • Tanke, H.J., 1989, Does light microscopy have a future? J. Microsc. 155:405–418.

    Article  Google Scholar 

  • Tebo, A.R., 1988, Scientists develop useful optical materials, Laser Focus/Electro Optics August: 103–110.

    Google Scholar 

  • Unger, B., 1994, Device saves laser diodes from electrostatic-discharge damage, Laser Focus World May:23 8–240.

    Google Scholar 

  • vandeVen, M., and Gratton, E., 1992, Time-resolved fluorescence lifetime imaging, in: Optical Microscopy: Emerging Methods and Applications (B. Herman, ed.), Academic Press, New York, pp. 373–402.

    Google Scholar 

  • Wang, X.F., 1990, Fundamental studies on time-resolved fluorescence image spectroscopy techniques, Dissertation, Osaka University.

    Google Scholar 

  • Wang, X.F., Kitajima, S., Uchida, T., Coleman, D.M., and Minami, S., 1990, Time-resolved fluorescence microscopy using multichannel photon counting, Appl. Spectrosc. 44:25–30.

    Article  CAS  Google Scholar 

  • Wang, X.F., Periasamy, A., Herman, B., and Coleman, D.M., 1992, Fluorescence lifetime imaging microscopy (FLIM): Instrumentation and applications, Crit. Rev. Anal. Chem. 23:369–395.

    Article  CAS  Google Scholar 

  • Weast, R.C., and Tuve, G.L., 1971, Handbook of Lasers with Selected Data on Optical Technology, CRC Press, Cleveland, Ohio.

    Google Scholar 

  • Wilson, D.A., Vickers, G.H., and Hieftje, G.M., 1985, Novel techniques for the determination of fluorescence lifetimes, Anal. lustrum. 14:483–502.

    Article  CAS  Google Scholar 

  • Winburn, D.C., 1985, Practical Laser Safety, Dekker, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1995 Springer Science+Business Media New York

About this chapter

Cite this chapter

Gratton, E., vandeVen, M.J. (1995). Laser Sources for Confocal Microscopy. In: Pawley, J.B. (eds) Handbook of Biological Confocal Microscopy. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-5348-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-5348-6_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-5350-9

  • Online ISBN: 978-1-4757-5348-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics