Quantitative Fluorescence Confocal Laser Scanning Microscopy (CLSM)

  • David R. Sandison
  • Rebecca M. Williams
  • K. Sam Wells
  • James Strickler
  • Watt W. Webb


The confocal imaging geometry provides a dramatic optical advantage for fluorescence microscopy by discriminating against out-of-focus background with minimal loss of image-forming signal. Significant enhancement of both axial and lateral imaging resolution is also available but only with substantial signal loss. Because of these optical advantages, the confocal laser scanning microscope (CLSM) can clearly image thin optical sections from within thick fluorescence-labeled living specimens. A stack of optical sections is easily combined to reveal three-dimensional (3D) fluorescent marker distributions with diffraction-limited spatial resolution. When bright stable fluorophores are available, cellular dynamics can be measured by recording a time series of CLSM images.


Objective Lens Shot Noise Spherical Aberration Axial Resolution Chromatic Aberration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Axelrod, D., Koppel, D.E., Schlessinger, J., Elson, E., and Webb, W.W., 1976, Mobility measurements by analysis of fluorescence photobleaching recovery kinetics, Biophys. J. 16:1055.PubMedCrossRefGoogle Scholar
  2. Berlman, I.B., 1971, Handbook of Fluorescence Spectra of Aromatic Molecules, 2nd ed., Academic Press, San Diego.Google Scholar
  3. Bloom, J. A., and Webb, W.W., 1983, Lipid diffusibility of the intact erythrocyte membrane, Biophys. J. 42:295.PubMedCrossRefGoogle Scholar
  4. Bloom, J.A., and Webb, W.W., 1984, Photodamage to intact erythrocyte membranes at high laser intensities: Methods of assay and suppression, J. Histochem. Cytochem. 32:608.PubMedCrossRefGoogle Scholar
  5. Born, M., and Wolf, E., 1983a, Principles of Optics, 6th ed., A. Wheaton & Co., Oxford, England.Google Scholar
  6. Born, M., and Wolf, E., 1983b, Principles of Optics, 6th ed., A. Wheaton & Co., Oxford, England, p. 443.Google Scholar
  7. Brakenhoff, G.J, and Visscher, K., 1990, Novel confocal imaging and visualization techniques. In: Micro90: Proceedings of the Royal Microscopical Society Conference, London, July 1990 (A. Hilger and H.Y. Elder, eds.), IOL Publishing Ltd., Bristol.Google Scholar
  8. Cox, I.J., and Sheppard, C.J.R., 1986, Information capacity and resolution in an optical system, J. Opt. Soc. Am., 3:1152–1158.CrossRefGoogle Scholar
  9. Davoust, J., Devaux, P.F., and Leger, L., 1982, Fringe pattern photobleaching, a new method for the measurement of transport coefficients of biological macromolecules, EMBO J. 1:1233–1238.PubMedGoogle Scholar
  10. Egger, M.D., and Petráň, M., 1967, New reflected light microscope for viewing unstained brain and ganglion cells, Science 157:305–307.PubMedCrossRefGoogle Scholar
  11. Goldstein, S., 1989, A no-moving-parts video rate laser beam scanning type 2 confocal reflected/transmission microscope, J. Microsc. 153:1–2.CrossRefGoogle Scholar
  12. Gunter, W.D. Jr., 1970, Optical device to increase photocathode quantum efficiency, Appl. Opt. 9:251–257.PubMedCrossRefGoogle Scholar
  13. Haugland, R.P., 1985, Handbook of Fluorescent Probes and Research Chemicals, Molecular Probes Inc., Eugene, Oregon.Google Scholar
  14. Hell, S., and Stelzer, E.H K., 1992, Fundamental improvement of resolution with a 4Pi-confocal fluorescence microscope using two-photon excitation, Opt. Commun. 93:277–282.CrossRefGoogle Scholar
  15. Inoué, S. 1986, Video Microscopy, Plenum Press, New York.Google Scholar
  16. Jovin, T.M., and Jovin, D. A., 1987. In: Microspectrofluorometry of Single Living Cells (E. Kohen, J.S. Ploem, and J.S. Hirschberg, eds.), Academic Press, San Diego.Google Scholar
  17. Jovin, T.M., and Arndt-Jovin, D.J., 1989, Luminescence Digital Imaging Microscopy, Annu. Rev. Biophys. Biophys Chem. 18:271–308.PubMedCrossRefGoogle Scholar
  18. Kino, G.S., 1990, Intermediate optics inNipkow disk microscopes. In: Handbook of Biological Confocal Microscopy (J.B. Pawley, ed.), Plenum Press, New York, pp. 105–111.CrossRefGoogle Scholar
  19. Koester, C.J., 1980, A scanning mirror microscope with optical sectioning characteristics: Applications in ophthalmology, Appl. Opt. 19:1749–1757.PubMedCrossRefGoogle Scholar
  20. Lichtman, J.W., Sunderland, W.J., and Wilkinson, R.S., 1989, High-resolution imaging of synaptic structure with a simple confocal microscope, New Biol. 1:75–82.PubMedGoogle Scholar
  21. Packard, B.S., and Wolf, D.E., 1985, Fluorescence lifetimes of carbocyanine lipid analogues in phosopholipid bilayers, Biochemistry 24:5176–5181.PubMedCrossRefGoogle Scholar
  22. Pawley, J.B., 1994, Sources of noise in three-dimensional microscopical data sets. In: Three-dimensional Confocal Microscopy: Volume Investigation of Biological Specimens (J.K. Stevens, L.R. Mills, and J.E. Trogadis, eds.), Academic Press, San Diego, pp. 48–90.Google Scholar
  23. Sandison, D.R., 1993, Fluorescence Confocal Laser Scanning Microscopy in Living Biological Specimens, PhD thesis, Department of Physics, Cornell University, Ithaca, New York.Google Scholar
  24. Sandison, D.R., and Webb, W.W., 1994, Background rejection and signal-to-noise optimization in confocal and alternative fluorescence microscopes, Appl. Opt. 33:603–615.PubMedCrossRefGoogle Scholar
  25. Sandison, D.R., Piston, D.W., and Webb, W.W. 1994a, Background rejection and optimization of signal-to-noise in confocal microscopy. In: Three-dimensional Confocal Microscopy: Volume Investigation of Biological Specimens (J.K. Stevens, L.R. Mills, and J. E. Trogadis, eds.), Academic Press, San Diego, pp. 29–45.CrossRefGoogle Scholar
  26. Sandison, D.R., Piston, D.W., Williams, R.M., and Webb, W.W., 1994b, Quantitative comparison of background rejection, signal-to-noise ratio, and resolution in confocal and fullfield laser scanning microscopes, App. Opt. 1994, in press.Google Scholar
  27. Saffman, P.G., and Delbruck, M., 1975, Brownian motion in biological membranes, Proc. Natl. Acad. Sci. USA 72:3111–3113.PubMedCrossRefGoogle Scholar
  28. Schneider, M.B., and Webb, W.W., 1981, Measurement of submicron laser beam radii, Appl. Opt. 20:1382–1388.PubMedCrossRefGoogle Scholar
  29. Sheppard, C.J.R., and Matthews, H.J., 1987, Imaging in high aperture optical systems, J. Opt. Soc. Am. A4:1354–1360.CrossRefGoogle Scholar
  30. Sheppard, C.J.R., 1988, Depth of field in optical microscopy, J. Microsc. 149:73–75.CrossRefGoogle Scholar
  31. Smith, B.A., and McConnell, H.M., 1978, Determination of molecular motion in membranes using periodic pattern photobleaching, Proc. Natl. Acad. Sci. USA 75:2759–2763.PubMedCrossRefGoogle Scholar
  32. Tanke, H.J., 1989, Does light microscopy have a future?, J. Micros. 155: 405–418.CrossRefGoogle Scholar
  33. Webb, J.P., McColgin, W.C., Peterson, O.G., Stockman, D.L., and Eberly, J.H., 1970, Intersystem crossing rate and triplet state lifetime for a lasing dye, J. Chem. Phys. 53:4227–4229.CrossRefGoogle Scholar
  34. Wells, K.S., Sandison, D.R., Strickler, J., and Webb, W.W., 1990, Quantitative fluorescence imaging with laser scanning confocal microscopy. In: Handbook of Biological Confocal Microscopy (J.B. Pawley, ed.), Plenum Press, New York, pp. 27–39.CrossRefGoogle Scholar
  35. White, J.G., Amos, W.B., and Fordham, M., 1987, An evaluation of confocal versus conventional imaging of biological structures by fluorescence light microscopy, J. Cell Biol. 105:41–48.PubMedCrossRefGoogle Scholar
  36. Wilson, T., and Carlini, A.R. 1988, Three-dimensional imaging in confocal imaging systems with finite sized detectors, J. Microsc. 149:51–66.CrossRefGoogle Scholar
  37. Wilson, T., and Sheppard, C. 1984, Theory and Practice of Scanning Optical Microscopy, Academic Press, London.Google Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • David R. Sandison
    • 1
  • Rebecca M. Williams
    • 1
  • K. Sam Wells
    • 1
  • James Strickler
    • 1
  • Watt W. Webb
    • 1
  1. 1.Developmental Resource for Biophysical Imaging and Optoelectronics, Applied and Engineering PhysicsCornell UniversityIthacaUSA

Personalised recommendations