Two New High-Resolution Confocal Fluorescence Microscopies (4Pi, Theta) with One- and Two-Photon Excitation

  • Steffen Lindek
  • Ernst H. K. Stelzer
  • Stefan W. Hell


Improving spatial resolution has been one of the main goals of research since the early beginnings of light microscopy. As a microscope objective lens cannot cover more than 35% of the full solid angle of 4rc steradians, the intensity distribution of a focused spot is elongated along the optical axis and the axial resolution in a conventional microscope is generally many times poorer than the lateral resolution. Much effort has been exerted to reduce the axial extent of this light distribution. An important step toward an improved axial resolution was the development of confocal arrangements (Minsky, 1961; Brakenhoff et al., 1979; Wilson et al., 1980; Wijnaendts van Resandt et al., 1985; Carlsson et al., 1985) that permit the investigation of thick samples along their optical axis. However, the axial resolution in a confocal microscope is still poorer than the lateral resolution (Wilson and Sheppard, 1984, pp. 70–72). Further improvement was limited by the fact that, according to diffraction theory, an improvement is only feasible by decreasing the wavelength or by increasing the numerical aperture (NA) of the objective lens.


Objective Lens Central Peak Axial Resolution Nile Blue European Molecular Biology Laboratory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bailey, B., Farkas, D.L., Taylor, D.L., and Lanni, F., 1993, Enhancement of axial resolution in fluorescence microscopy by standing-wave excitation, Nature 366:44–48.PubMedCrossRefGoogle Scholar
  2. Born, M., and Wolf, E., 1980, Principles of Optics, Pergamon Press, Oxford.Google Scholar
  3. Bradl, J., Hausmann, M., Ehemann, V., Komitowski, D., and Cremer, C., 1992, A tilting device for three-dimensional microscopy: Applications to in situ imaging of interphase cell nuclei. J. Microsc. 168:47–57.PubMedCrossRefGoogle Scholar
  4. Brakenhoff, G.J., Blom, P., and Barends, P., 1979, Confocal scanning light microscopy with high aperture immersion lenses, J. Microsc. 117:219–232.CrossRefGoogle Scholar
  5. Carlsson, K., Danielsson, P.E., Lenz, R., Liljeborg, A., Majlöf, L., and Aslund, N., 1985, Three-dimensional microscopy using a confocal laser scanning microscope, Opt. Lett. 10:53–55.PubMedCrossRefGoogle Scholar
  6. Denk, W., Strickler, J.H., and Webb, W.W., 1990, Two-photon laser scanning fluorescence microscopy, Science 248:73–76.PubMedCrossRefGoogle Scholar
  7. Hänninen, P., and Hell, S., 1993, Significantly improved axial resolution with complementary interferences in a 4Pi-confocal fluorescent microscope, presented at the 1993 International Conference on Confocal Microscopy & 3D Image Processing, Sydney.Google Scholar
  8. Hänninen, P., and Hell, S., 1993, Significantly improved axial resolution with complementary interferences in a 4Pi-confocal fluorescent microscope, presented at the 1993 International Conference on Confocal Microscopy & 3D Image Processing, Sydney.Google Scholar
  9. Hell, S., and Stelzer, E.H.K., 1992a, Properties of a 4Pi-confocal fluorescence microscope, J. Opt. Soc. Am. A 9:2159–2166.CrossRefGoogle Scholar
  10. Hell, S., and Stelzer, E.H.K., 1992b, Fundamental improvement of resolution with a 4Pi-confocal fluorescence microscope using two-photon excitation, Opt. Commun. 93:277–282.CrossRefGoogle Scholar
  11. Hell, S., Reiner, G., Cremer, C., Stelzer, E.H.K., 1993, Aberrations in confocal fluorescence microscopy induced by mismatches in refractive index, J. Microsc. 169:391–405.CrossRefGoogle Scholar
  12. Hell, S.W., Stelzer, E.H.K., Lindek, S., and Cremer, C., 1994a, Confocal microscopy with an increased detection aperture: Type-B 4Pi confocal microscopy, Opt. Lett. 19:222–224.PubMedCrossRefGoogle Scholar
  13. Hell, S.W., Lindek, S., and Stelzer, E.H.K., 1994b, Enhancing the axial resolution in far-field light microscopy: Two-photon 4Pi confocal fluorescence microscopy, J. Mod. Opt. 41:675–681.CrossRefGoogle Scholar
  14. Hell, S.W., Lindek, S., Cremer, C., and Stelzer, E.H.K., 1994c, Measurement of the 4Pi-confocal point spread function proves 75 nm axial resolution, Appl. Phys. Lett. 64:1335–1337.CrossRefGoogle Scholar
  15. Kodak, Optical Products, Rochester, USA.Google Scholar
  16. Lanni, F., 1986, Standing-wave fluorescence microscopy. In: Applications of Fluorescence in the Biomedical Sciences (D.L. Taylor, A.S. Waggoner, R.F. Murphy, F. Lanni, and R.R. Birge, eds.), Alan R. Liss, New York.Google Scholar
  17. Lindek, S., 1993, Auflösungsmessungen mit dem 4Pi-konfokalen Rastermikroskop. Diploma thesis, Universität Heidelberg.Google Scholar
  18. Lindek, S., and Stelzer, E.H.K., 1994, Confocal theta microscopy and 4Pi-con-focal theta microscopy. SPIE Proc. 2184:188–194.CrossRefGoogle Scholar
  19. Lindek, S., Pick, R., and Stelzer, E.H.K., 1994, Confocal theta microscope with three objective lenses, Rev. Sci. Instr., in press.Google Scholar
  20. Minsky, M., 1961, Microscopy apparatus, U.S. Patent No. 3,013,467 (filed 1957).Google Scholar
  21. Richards, B., and Wolf, E., 1959, Electromagnetic diffraction in optical systems II, Proc. R. Soc. Lond. Ser. A 253:358–379.CrossRefGoogle Scholar
  22. Schott, 1984, Optisches Glas, Mainz, Germany.Google Scholar
  23. Shaw, P.J., Agard, D.A., Hiraoka, Y., and Sedat, J.W., 1989, Tilted view reconstruction in optical microscopy, Biophys. J. 55:101–110.PubMedCrossRefGoogle Scholar
  24. Sheppard, C.J.R., and Kompfner, R., 1978, Resonant scanning optical microscope. Appl. Optics 17:2879–2882.CrossRefGoogle Scholar
  25. Stelzer, E.H.K., and Lindek, S., 1994, Fundamental reduction of the observation volume in far-field light microscopy by detection orthogonal to t le illumination axis: Confocal theta microscopy, Opt. Commun. 11l:536–547.CrossRefGoogle Scholar
  26. Stelzer, E.H.K., Hell, S., Lindek, S., Stricker, R., Pick, R., Storz, C., Ritter, G., and Salmon, N., 1994, Nonlinear absorption extends confocal fluorescence microscopy into the ultra-violet regime and confines the illumination volume, Opt. Commun. 104:223–228.CrossRefGoogle Scholar
  27. Wijnaendts van Resandt, R.W., Marsman, H.J.B., Kaplan, R., Davoust, J., Stelzer, E.H.K., and Stricker, R., 1985, Optical fluorescence microscopy in three dimensions: Microtomoscopy, J. Microsc. 138:29–34.CrossRefGoogle Scholar
  28. Wilson, T., and Sheppard, C.J.R., 1984, Theory and Practice of Scanning Optical Microscopy, Academic Press, London.Google Scholar
  29. Wilson, T., Gannaway, J.N., and Johnson, P., 1980, A scanning optical micio-scope for the inspection of semiconductor materials and devices, J. Microsc. 118:309–314.CrossRefGoogle Scholar
  30. Wolfram, S., 1991, Mathematica-A System for Doing Mathematics by Computer, Addison-Wesley, Reading, MA.Google Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Steffen Lindek
    • 1
    • 2
  • Ernst H. K. Stelzer
    • 3
  • Stefan W. Hell
    • 1
  1. 1.Light Microscopy GroupEuropean Molecular Biology Laboratory (EMBL)HeidelbergGermany
  2. 2.Institut für Angewandte PhysikUniversität HeidelbergHeidelbergGermany
  3. 3.Cell Biophysics ProgrammeEuropean Molecular Biology Laboratory (EMBL)HeidelbergGermany

Personalised recommendations