Advertisement

Direct View Confocal Imaging Systems Using a Slit Aperture

  • W. B. Amos
  • J. G. White

Abstract

Minsky’s original confocal microscope (1957) scans a specimen under a spot of light and detects emission from the same spot, using circular apertures to define both the illuminating and the emitted beams. Many subsequent designs have used multiple or slit-shaped apertures, retaining some of the confocal effect but permitting faster imaging. In some of these microscopes, the succession of optical images is so fast that the flicker-fusion frequency (ca. 18 Hz) of human vision is exceeded, giving an impression of continuous, direct viewing. This chapter concentrates on the type of direct view confocal microscope that uses a slit aperture and an imaging detector. Various forms of this microscope are now available commercially and their use seems likely to increase.

Keywords

Stereo Image Conventional Microscope Point Scanner Aperture Plane Confocal Image System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baer, S., 1970, Focal plane specific microscopy, U.S. Patent No. 3,547,512.Google Scholar
  2. Boyde, A., 1987, Colour-coded stereo images from the tandem scanning reflected light microscope, J. Microsc. 146:137–142.PubMedCrossRefGoogle Scholar
  3. Brakenhoff, G.J., and Visscher, K., 1990, Novel confocal imaging and visualization techniques. In: Micro 90: Proceedings of the Royal Microscopical Society Conference, London, July 1990, Adam Hilger, London.Google Scholar
  4. Brakenhoff, G.J., and Visscher, K., 1993, Imaging modes for bilateral confocal scanning microscopy. J. Microsc. 171:17–26.CrossRefGoogle Scholar
  5. Brakenhoff, G.J., vander Voort, H.T.M., von Spronsen, E.A., Linnemans, W. A.M., and Nanninger, N., 1985, Three-dimensional chromatin distribution in neuroblastoma nuclei shown by confocal laser scanning microscopy, Nature 317:748–749.PubMedCrossRefGoogle Scholar
  6. Burns, D.H., Hatangadi, R.B., and Spelman, F.A., 1990, Scanning slit aperture confocal microscopy for three-dimensional imaging, Scanning 12:156–160.CrossRefGoogle Scholar
  7. Draaijer, A., and Houpt, P.M., 1993, High scan-rate confocal laser scanning microscopy. In: Electronic Light Microscopy (D.M. Shotton, ed.), Wiley-Liss, New York, pp. 273–287.Google Scholar
  8. Hell, S., Reiner, G., Cremer, C., and Stelzer, E.H.K., 1993, Aberrations in confocal fluorescence microscopy induced by mismatches in refractive index, J. Microsc. 169:391–405.CrossRefGoogle Scholar
  9. Kino, G.S., 1989, Intermediate optics in Nipkow disk microsopes. In: Handbook of Biological Confocal Microscopy (J.B. Pawley, ed.), Plenum Press, New York, pp. 105–111.Google Scholar
  10. Koester, C.J., 1980, Scanning mirror microscope with optical sectioning characteristics: Applications in ophthalmology, Appl. Optics 19:1749–1757.CrossRefGoogle Scholar
  11. Lichtman, J.W., Sunderland, W.J., and Wilkinson, R.S., 1989, High-resolution imaging of synaptic structure with a simple confocal microscope, The New Biologist 1:75–82.PubMedGoogle Scholar
  12. Minsky, M., 1957, Microscopy apparatus, U.S. Patent No. 3,013,467.Google Scholar
  13. Pawley, J.B., 1994, The sources of noise in three-dimensional microscopical data sets. In: Three-Dimensional Confocal Microscopy: Volume Investigation of Biological Specimens (J. Stevens, L.R. Mills, and J.E. Trogadis, eds.), Academic Press, New York, pp. 48–94.Google Scholar
  14. Petráň, M., Hadravsky, M. Egger, D., and Galambos, R., 1968, Tandem-scanning reflected light microscope. J. Opt. Soc. Am. 58:661–664.CrossRefGoogle Scholar
  15. Sandison, D.R., and Webb, W.W., 1994, Background rejection and signal-to-noise optimisation in the confocal and alternative fluorescence microscopes, Appl. Optics, 33:603–615.CrossRefGoogle Scholar
  16. Sandison, D.R., Piston, D.W., and Webb, W.W., 1994, Background rejection and optimisation of signal-to-noise in confocal microscopy. In: Three-Dimensional Confocal Microscopy: Volume Investigation of Biological Specimens (J.K. Stevens, L.R. Mills, and J.E. Trogadis, eds.), Academic Press, New York, pp. 29–47.CrossRefGoogle Scholar
  17. Schauenstein, K., Bock, G., and Wick, G., 1980, Short time bleaching of fluorescein isothiocyanate, J. Histochem. Cytochem 28:1029–1031.PubMedCrossRefGoogle Scholar
  18. Wijnaendts van Resant, R.W., Marsman, H.J.B., Kaplan, J., Davoust, J., Stelzer, E.H.K., and Stricker, R., 1984, Optical fluorescence microscopy in three dimensions: Microtomoscopy, J. Microsc. 138:29–34.Google Scholar
  19. Wilson, T., 1990, Optical aspects of confocal microscopy. In Confocal Microscopy (T. Wilson, ed.), Academic Press, New York, pp. 91–141.Google Scholar
  20. Wilson, T., and Sheppard, C., 1984, Theory and Practice of Scanning Optical Microscopy, Academic Press, New York.Google Scholar
  21. White, J.G., 1991, Confocal imaging system, U.S. Patent No. 5,032,720.Google Scholar
  22. White, J.G., Amos, W.B., and Fordham, M., 1987, An evaluation of confocal versus conventional imaging of biological structures by fluorescence light microscopy, J. Cell Biol 105:41–48.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • W. B. Amos
    • 1
  • J. G. White
    • 2
  1. 1.MRC Laboratory of Molecular BiologyCambridgeUK
  2. 2.Microscopy ResourceUniversity of WisconsinMadisonUSA

Personalised recommendations