Advertisement

Fluorophores for Confocal Microscopy

Photophysics and Photochemistry
  • Roger Y. Tsien
  • Alan Waggoner

Abstract

Fluorescence is probably the most important optical readout mode in biological confocal microscopy, because it can be so much more sensitive and specific than absorbance or reflectance, and because it works so well with epi-illumination, which greatly simplifies scanner design. These advantages of fluorescence are critically dependent on the availability of suitable fluorophores that can either be tagged onto biological macromolecules to show their location, or whose optical properties are sensitive to the local environment. Despite the pivotal importance of good fluorophores, little is known about how to rationally design good ones. Whereas the concept of confocal microscopy is only a few decades old and nearly all the optical, electronic, and computer components to support it have been developed or redesigned in the last few years, the most popular fluorophores were developed more than a century ago (in the case of fluoresceins or rhodamines) or several billion years ago (in the case of phycobiliproteins). Moreover, whereas competition between commercial makers of confocal microscopes stimulates ardent efforts to refine the instrumentation, relatively few companies or academic scientists are interested in improving fluorophores.

Keywords

Confocal Microscopy Triplet State Quantum Efficiency Excited Singlet Propyl Gallate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adams, S.R., Harootunian, A.T., Buechler, Y.J., Taylor, S.S., and Tsien, R.Y., 1991, Fluorescence ratio imaging of cyclic AMP in single cells, Nature 349:694–697.PubMedCrossRefGoogle Scholar
  2. Anel, A., Richieri, G.V., and Kleinfeld, A.M., 1993, Membrane partition of fatty acids and inhibition of T cell function, Biochemistry 32:530–536.PubMedCrossRefGoogle Scholar
  3. Axelrod, D., 1977, Cell surface heating during fluorescence photobleaching recovery experiments, Biophys. J. 18:129–131.PubMedCrossRefGoogle Scholar
  4. Axelrod, D., 1989, Fluorescence polarization microscopy, Methods Cell Biol 30:333–352.PubMedCrossRefGoogle Scholar
  5. Bacskai, B.J., Hochner, B., Mahaut-Smith, M., Adams, S.R., Kaang, B.-K., Kandel, E.R., and Tsien, R.Y., 1993, Spatially resolved dynamics of cAMP and protein kinase A subunits in Aplysia sensory neurons, Science 260:222–226.PubMedCrossRefGoogle Scholar
  6. Bailey, E.A., Jr., and Rollefson, G.K., 1953, The determination of the fluorescence lifetimes of dissolved substances by a phase shift method, J. Chem. Phys. 21:1315–1322.CrossRefGoogle Scholar
  7. Ballard, S.G., and Ward, D.C., 1993, Fluorescence in situ hybridization using digital imaging microscopy, J. Histochem. Cytochem. 12:1755–1759.CrossRefGoogle Scholar
  8. Beverloo, H.B., van Schadewijk, A., Bonnet, J., van der Geest, R., Runia, R., Verwoerd, N.P., Vrolijk, J., Ploem, J.S., and Tanke, H.J., 1992, Preparation and microscopic visualization of multicolor luminescent immu-nophsphors, Cytometry 13:561070.CrossRefGoogle Scholar
  9. Bloom, J.A., and Webb, W.W., 1984, Photodamage to intact erythrocyte membranes at high laser intensities: Methods of assay and suppression, J. Histochem. Cytochem. 32:608–616.PubMedCrossRefGoogle Scholar
  10. Bonhoeffer, T., and Staiger, V., 1988, Optical recording with single cell resolution from monolayered slice cultures of rat hippocampus, Neurosci. Lett. 92:259–264.PubMedCrossRefGoogle Scholar
  11. Brelje, T.C., Wessendorf, M.W., and Sorenson, R.L., 1993, Multicolor laser scanning confocal immunofluorescence microscopy: Practical applications and limitations, Methods Cell Biol. 38:97–181.PubMedCrossRefGoogle Scholar
  12. Bright, G.R., Fisher, G.W., Rogowska, J., and Taylor, D.L., 1987, Fluorescence ratio imaging microscopy: Temporal and spatial measurements of cytoplasmic pH, J. Cell Biol. 104:1019–1033.PubMedCrossRefGoogle Scholar
  13. Chalfie, M., Tu, Y., Euskirchen, G., Ward, W.W., andPrasher, D.C., 1994, Green fluorescent protein as a marker for green expression, Science 263:802–805.PubMedCrossRefGoogle Scholar
  14. Chen, R.F., and Scott, C.H., 1985, Atlas of fluorescence spectra and lifetimes of dyes attached to protein, Anal Lett. 18:393–421.CrossRefGoogle Scholar
  15. Cohen, L.B., and Lesher, S., 1986, Optical monitoring of membrane potential: Methods of multisite optical measurement. In: Optical Methods in Cell Physiology (P. De Weer and B.M. Salzberg, eds.), Wiley, New York, pp. 71–99.Google Scholar
  16. Dix, J.A., and Verkman, A.S., 1989, Spatially resolved anisotropy images of fluorescent probes incorporated into living cells, Biophys. J. 55:189a.Google Scholar
  17. Ehrenberg, B., Montana, V., Wei, M.D., Wuskell, J.P., and Loew, L.M., 1988, Membrane potentials can be determined in individual cells from the Nernstian distribution of cationic dyes, Biophys. J. 53:785–794.PubMedCrossRefGoogle Scholar
  18. Fine, A., Amos, W.B., Durbin, R.M., and McNaughton, P.A., 1988, Confocal microscopy: Applications in neurobiology, Trends Neurosci. 11:346–351.PubMedCrossRefGoogle Scholar
  19. Galbraith, W., Ernst, L.A., Taylor, D.L., and Waggoner, A.S., 1989, Multiparameter fluorescence and the selection of optimal filter sets: Mathematics and computer program, Proc. Soc. Photo. Opt. Instrum. Eng. 1063:74–122.Google Scholar
  20. Gandin, E., Lion, Y., and Van de Vorst, A., 1983, Quantum yields of singlet oxygen production by xanthene derivatives, Photochem. Photobiol 37:271–278.CrossRefGoogle Scholar
  21. Giloh, H., and Sedat, J.W., 1982, Fluorescence microscopy: Reduced photobleaching of rhodamine and fluorescein protein conjugates by «-propyl gallate, Science 217:1252–1255.PubMedCrossRefGoogle Scholar
  22. Glazer, A.N., 1988, Fluorescence-based assay for reactive oxygen species: A protective role for creatinine, FASEB J. 2:2487–2491.PubMedGoogle Scholar
  23. Glazer, A.N., 1989, Light guides. Directional energy transfer in a photosynthetic antenna, J. Biol. Chem. 264:1–4.PubMedGoogle Scholar
  24. Gross, D., and Loew, L.M., 1989, Fluorescent indicators of membrane potential: Microspectrofluorometry and imaging, Methods Cell Biol. 30:193–218.PubMedCrossRefGoogle Scholar
  25. Harootunian, A.T., Adams, S.R., Wen, W., Meinkoth, J.L., Taylor, S.S., and Tsien, R.Y., 1993, Movement of the free catalytic subunit of cAMP dependent protein kinase into and out of the nucleus can be explained by diffusion, Mol Biol. Cell 4:993–1002.PubMedGoogle Scholar
  26. Haugland, R.P., 1989, Molecular Probes: Handbook of Fluorescent Probes and Research, Chemicals, Molecular Probes Inc., Eugene, Oregon, pp.86–94.Google Scholar
  27. Herman, B., 1989, Resonance energy transfer microscopy, Methods Cell Biol 30:219–243.PubMedCrossRefGoogle Scholar
  28. Hernandez-Cruz, A., Sala, F., and Adams, P.R., 1989, Subcellular dynamics of [Ca]j monitored with laser scanned confocal microscopy in a single voltage-clamped vertebrate neuron, Biophys. J. 55:216a.Google Scholar
  29. Hirschfeld, T., 1976, Quantum efficiency independence of the time integrated emission from a fluorescent molecule, Appl. Optics 15:3135–3139.CrossRefGoogle Scholar
  30. Jericevic, Z., Wiese, B., Bryan, J., and Smith, L.C., 1989, Validation of an imaging system: Steps to evaluate and validate a microscope imaging system for quantitative studies, Methods Cell Biol. 30:47–83.PubMedCrossRefGoogle Scholar
  31. Kang, H.C., Fisher, P.J., Prendergast, F.G., and Haugland, R.P., 1988, Bodipy: A novel fluorescein and NBD substitute, J. Cell Biol. 107:34a.Google Scholar
  32. Kao, J.P.Y., Harootunian, A.T., and Tsien, R.Y., 1989, Photochemically generated cytosolic calcium pulses and their detection by fluo-3, J. Biol. Chem. 264:8179–8184.PubMedGoogle Scholar
  33. Kaplan, N.O., 1960, The pyridine coenzymes. In: The Enzymes, 2nd ed. (P.D. Boyer, H. Lardy, and K. Myrbäck, eds), Academic Press, New York, pp. 105–169.Google Scholar
  34. Koziol, J., 1971, Fluorometric analyses of riboflavin and its coenzymes, Methods Enzymol 18B:253–285.CrossRefGoogle Scholar
  35. Kurtz, I., and Balaban, R.S., 1985, Fluorescence emission spectroscopy of 1,4-dihydroxyphthalonitrile: A method for determining intracellular pH in cultured cells, Biophys. J. 48:499–508.PubMedCrossRefGoogle Scholar
  36. Kurtz, I., and Emmons, C., 1993, Measurement of intracellular pH with a laser scanning confocal microscope. Methods Cell Biol. 38:183–193.PubMedCrossRefGoogle Scholar
  37. Kuwahara, M., and Verkman, A.S., 1988, Direct fluorescence measurement of diffusional water permeability in the vasopressin-sensitive kidney collecting tubule, Biophys. J. 54:587–593.PubMedCrossRefGoogle Scholar
  38. Kuwahara, M., Berry, C.A., and Verkman, A.S., 1988, Rapid development of vasopressin-induced hydroosmosis in kidney collecting tubules measured by a new fluorescence technique, Biophys. J. 54:595–602.PubMedCrossRefGoogle Scholar
  39. Lakowicz, J.R., 1983a, Principles of Fluorescence Spectroscopy, Plenum Press, New York.CrossRefGoogle Scholar
  40. Lakowicz, J.R., 1983b, Fluorescence lifetime imaging, Anal. Biochem. 202:316–30.CrossRefGoogle Scholar
  41. Lewis, G.N., Lipkin, D., and Magel, T.T., 1941, Reversible photochemical processes in rigid media: A study of the phosphorescent state, J. Am. Chem. Soc. 63:3005–3018.CrossRefGoogle Scholar
  42. Lindqvist, L., 1960, A flash photolysis study of fluorescein, Ark Kemi 16:79 – 138.Google Scholar
  43. Liphardt, B., Liphardt, B., and Lüttke, W., 1982, Laserfarbstoffe mit intramolekularer Triplettlöschung, Chem. Ber. 115:2997–3010.CrossRefGoogle Scholar
  44. Liphardt, B., Liphardt, B., and Lüttke, W., 1983, Laser dyes III: Concepts to increase the photostability of laser dyes, Opt. Commun. 48:129–133.CrossRefGoogle Scholar
  45. Loew, L.M., 1993, Confocal microscopy of Potentiometric fluorescent dyes, Methods Cell Biol 38:195–209.PubMedCrossRefGoogle Scholar
  46. Manitto, P., Speranza, G., Monti, D., and Gramatica, P., 1987, Singlet oxygen reactions in aqueous solution. Physical and chemical quenching rate constants of crocin and related carotenoids, Tetrahedron Lett. 28:4221–4224.CrossRefGoogle Scholar
  47. Marriott, G., Clegg, R.M., Arndt-Jovin, D.J., and Jovin, T.M., 1991, Time-resolved imaging studies. Phosphorescence and delayed fluorescence imaging, Biophys. J. 60:1374–1387.PubMedCrossRefGoogle Scholar
  48. Matheson, I.B.C., and Rodgers, M.A.J., 1982, Crocetin, a water soluble carote-noid monitor for singlet molecular oxygen, Photochem. Photobiol. 36:1–4.CrossRefGoogle Scholar
  49. Mathies, R.A., and Stryer, L., 1986, Single-molecule fluorescence detection: A feasibility study using phycoerythrin. In: Applications of Fluorescence in the Biomedical Sciences (D.L. Taylor, A.S. Waggoner, R.F. Murphy, F. Lanni, and R.R. Birge, eds.), Liss, New York, pp. 129–140.Google Scholar
  50. Matthews, M.M., and Sistrom, W.R., 1959, Function of carotenoid pigments in nonphotosynthetic bacteria, Nature 184:1892–1893.CrossRefGoogle Scholar
  51. Minata, A., Kao, J.P.Y., and Tsien, R.Y., 1989, Fluorescent indicators for cytosolic calcium based on rhodamine and fluorescein chromophores, J. Biol. Chem. 264:8171–8178.Google Scholar
  52. Mujumdar, R.B., Ernst, L.A., Mujumdar, S.R., Lewis, C.J., and Waggoner, A.S., 1993, Cyanine dye labeling reagents: Sulfoindocyanine succinimidyl esters, Bioconj. Chem. 4:105–111.CrossRefGoogle Scholar
  53. Mukkala, V.M., 1993, Development of stable, photoluminescent europium (III) and terbium (III) chelates suitable as markers in bioaffinity assays: Their synthesis and luminescence properties, Thesis, University of Turku, Turku, Finland.Google Scholar
  54. Nguyen, D.C., Keller, R.A., Jett, J.H., and Martin, J.C., 1987, Detection of single molecules of phycoerythrin in hydrodynamically focused flows by laser-induced fluorescence, Anal. Chem. 59:2158–2161.PubMedCrossRefGoogle Scholar
  55. Oi, V., Glazer, A.N., and Stryer, L., 1982, Fluorescent phycobiliprotein conjugates for analyses of cells and molecules, J. Cell Biol. 93:981–986.PubMedCrossRefGoogle Scholar
  56. Peck, K., Stryer, L., Glazer, A.N., and Mathies, R.A., 1989, Single molecule fluorescence detection: Autocorrelation criterion and experimental realization with phycoerythrin, Proc. Natl. Acad. Sci. USA 86:408–091.CrossRefGoogle Scholar
  57. Prasher, D.C., Eckenrode, V.K., Ward, W.W., Prendergast, F.G., and Cormier, M.J., 1992, Primary structure of the Aequorea victoria green-fluorescent protein, Gene 111:229–233.PubMedCrossRefGoogle Scholar
  58. Rechtenwald, D.J., 1989, United States Patent No. 4,876,190.Google Scholar
  59. Reyftmann, J.P., Kohen, E., Morliere, P., Sanrus, R., Kohen, C., Mangel, W.F., Dubertret, L., and Hirschberg, J.G., 1986, A microspectrofluorometric study of porphyrin-photosensitized single living cells—I. Membrane alterations, Photochem. Photobiol. 44:461–469.PubMedCrossRefGoogle Scholar
  60. Richieri, G.V., Ogata, R.T., and Kleinfeld, A.M., 1992, A fluorescently labeled intestinal fatty acid binding protein, J. Biol. Chem. 267:23495–23501.PubMedGoogle Scholar
  61. Richieri, G.V., Anel, A., and Kleinfeld, A.M., 1993, Interactions of long-chain fatty acids and albumin: Determination of free fatty acid levels using the fluorescent probe ADIFAB, Biochemistry 32:7574–7580.PubMedCrossRefGoogle Scholar
  62. Rye, H.S., Yue, S., Wemmer, D.E., Quesada, M.A., Haugland, R.P., Mathies, R.A., and Glazer, R.N., 1992, Stable fluorescent complexes of double-stranded DNAs with bis-intercalating asymmetrical cyanine dyes: Properties and applications, Nucl. Acids Res. 20:2803–2812.PubMedCrossRefGoogle Scholar
  63. Schafer, F.P., 1983, New developments in laser dyes, Laser Chem. 3:265–278.CrossRefGoogle Scholar
  64. Schneider, M.B., and Webb, W.W., 1981, Measurement of submicron laser beam radii, Appl. Optics 20:1382–1388.CrossRefGoogle Scholar
  65. Seveus, L., Vaisala, M., Hemmlia, I., Kojola, H., Roomans, G.M., and Soini, E., 1994, Use of fluorescent europium chelates as labels in microscopy allows glutaraldehyde fixation and permanent mounting and leads to reduced autofluorescence and good long-term stability, Microsc. Res. Tech. 27, in press.Google Scholar
  66. Sheetz, M.P., and Koppel, D.E., 1979, Membrane damage caused by irradiation of fluorescent concanavalin A, Proc. Natl. Acad. Sci. USA 76:3314–3317.PubMedCrossRefGoogle Scholar
  67. Smith, S.J., and Augustine, G.J., 1988, Calcium ions, active zones and synaptic transmitter release, Trends Neurosci. 11:458–464.PubMedCrossRefGoogle Scholar
  68. Soini, E.J., Pelliniemi, L.J., Hemmila, I.A., Mukkala, V.-M., Kankare, J.J., and Froidman, K., 1988, Lanthanide chelates as new fluorochrome labels for cytometry, J. Histochem. Cytochem. 36:1449–1451.PubMedCrossRefGoogle Scholar
  69. Southwick, P.L., Ernst, L.A., Tauriello, E.W., Parker, S.R., Mujumdar, R.B., Mujumdar, S.R., Clever, H.A., and Waggoner, A.S., 1990, Cyanine dye labeling reagents—Carboxymethylindocyanine succinimidyl esters, Cytometry 11:418–430PubMedCrossRefGoogle Scholar
  70. Strickler, S.J., and Berg, R.A., 1962, Relationship between absorption intensity and fluorescence lifetime of molecules, J. Chem. Phys. 37:814–822.CrossRefGoogle Scholar
  71. Tinoco, I., Mickols, W., Maestre, M.F., and Bustamante, C., 1987, Absorption, scattering, and imaging of biomolecular structures with polarized light, Annu. Rev. Biophys. Biophys. Chem. 16:319–349.PubMedCrossRefGoogle Scholar
  72. Trask, B.J., 1991, DNA sequence localization in metaphase and interphase cells by fluorescence in situ hybridization, Methods Cell Biol. 35:1–35.Google Scholar
  73. Tsien, R.Y., 1988, Fluorescence measurement and photochemical manipulation of cytosolic free calcium, Trends Neurosci. 11:419–424.PubMedCrossRefGoogle Scholar
  74. Tsien, R.Y., 1989a, Fluorescent probes of cell signaling, Annu. Rev. Neurosci. 12:227–253.PubMedCrossRefGoogle Scholar
  75. Tsien, R.Y., 1989b, Fluorescent indicators of ion concentrations, Methods Cell Biol. 30:127–156.PubMedCrossRefGoogle Scholar
  76. Tsien, R.Y., and Poenie, M., 1986, Fluorescence ratio imaging: A new window into intracellular ionic signaling, Trends Biochem. Sci. 11:450–455.CrossRefGoogle Scholar
  77. Uster, P.S., and Pagano, R.E., 1986, Resonance energy transfer microscopy: Observations of membrane-bound fluorescent probes in model membranes and in living cells, J. Cell Biol. 103:1221–1234.PubMedCrossRefGoogle Scholar
  78. Vigers, G.P.A., Coue, M., and Mcintosh, J.R., 1988, Fluorescent microtubules break up under illumination, J. Cell Biol. 107:1011–1024.PubMedCrossRefGoogle Scholar
  79. Wages, J., Packard, B., Edidin, M., and Brand, L., 1987, Time-resolved fluorescence of intracellular quin-2, Biophys. J. 51:284a.Google Scholar
  80. Waggoner, A., DeBiasio, R., Conrad, P., Bright, G.R., Ernst, L., Ryan, K., Nederlof, M., and Taylor, D., 1989, Multiple spectral parameter imaging, Methods Cell Biol. 30:449–478.PubMedCrossRefGoogle Scholar
  81. Waggoner, A.S., Ernst, L.A., Chen, C.-H., and Rechtenwald, D.J., 1993, A new fluorescent antibody label for three-color flow cytometry with a single laser, Ann, NY. Acad. Sci. 677:185–193.CrossRefGoogle Scholar
  82. Ward, W.W., Cody, C.W., and Hart, R.C., 1980, Spectrophotometic identity of the energy transfer chromophores in Renilla and Aequorea green-fluorescent proteins, Photochem. Photobiol. 31:611–615.CrossRefGoogle Scholar
  83. Watt, R.M., and Voss, E.W., Jr, 1977, Mechanism of quenching of fluorescein by anti-fluorescein IgG antibodies, Immunochemistry 14:533–541.PubMedCrossRefGoogle Scholar
  84. Wessendorf, M.W., and Brelje, T.C., 1992, Which fluorophore is brightest? A comparison of the staining obtained using fluorescein, tetramethylrho-damine, lissamine rhodamine, Texas Red, and cyanine 3.18, Histochemistry 98:81–85.PubMedCrossRefGoogle Scholar
  85. White, J.C., and Stryer, L., 1987, Photostability studies of phycobiliprotein fluorescent labels, Anal. Biochem. 161:442–452.PubMedCrossRefGoogle Scholar
  86. White, J.G., Amos, W.B., and Fordham, M., 1987, An evaluation of confocal versus conventional imaging of biological structures by fluorescence light microscopy, J. Cell Biol. 105:41–48.PubMedCrossRefGoogle Scholar
  87. Wilson, E.O., Sociobiology, Harvard University Press, Cambridge, Massachusetts, pp. 38–43.Google Scholar
  88. Wories, H.J., Koek, J.H., Lodder, G., Lugtenburg, J., Fokkens, R., Driessen, O., and Mohn, G.R., 1985, A novel water-soluble fluorescent probe: Synthesis, luminescence and biological properties of the sodium salt of the 4-sulfonato-3,3′,5,5′-tetramethyl-2,2′-pyrromethen-1,1′-BF2 complex, Recl. Trav. Chim. Pays-Bas 104:288–291.CrossRefGoogle Scholar
  89. Yu, H., Ernst, L.A., Wagner, M., and Waggoner, A.S., 1992, Sensitive detection of RNAs in single cells by flow cytometry, Nucl. Acids Res. 20:83–88.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Roger Y. Tsien
    • 1
  • Alan Waggoner
    • 2
  1. 1.Howard Hughes Medical Institute and Department of Pharmacology 0647, School of MedicineUniversity of CaliforniaSan DiegoUSA
  2. 2.Department of Biological Sciences and Center for Light Microscope Imaging and BiotechnologyCarnegie Mellon UniversityPittsburghUSA

Personalised recommendations