Advertisement

Foundations of Confocal Scanned Imaging in Light Microscopy

  • Shinya Inoué

Abstract

Seldom has the introduction of a new instrument generated as instant an excitement among biologists as the laser-scanning con-focal microscope. With the new microscope, one can slice incredibly clean thin optical sections out of thick fluorescent specimens; view specimens in planes tilted to, and even running parallel to, the line of sight; penetrate deep light-scattering tissues; gain impressive three-dimensional (3D) views at very high resolution; obtain differential interference or phase-contrast images in exact register with confocal fluorescence images; and improve the precision of microphotometry.

Keywords

Objective Lens Numerical Aperture Digital Image Processing Optical Section Axial Resolution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abbe, E., 1873, Beiträge zur Theorie des Mikroskops und der mikroskopischen Wahrnehmung, Schultzes Arc.f.Mikr. Anat. 9:413–468.CrossRefGoogle Scholar
  2. Abbe, E., 1884, Note on the proper definition of the amplifying power of a lens or a lens-system, J. R. Microsc. Soc. 4:348–351.CrossRefGoogle Scholar
  3. Agard, D.A., and Sedat, J.W., 1983, Three dimensional architecture of apolytene nucleus, Nature 302:676–681.PubMedCrossRefGoogle Scholar
  4. Agard, D.A., Hiraoka, Y., Shaw, P., and Sedat, J.W., 1989, Fluorescence microscopy in three dimensions, Methods Cell Biol. 30:353–377.PubMedCrossRefGoogle Scholar
  5. Allen, R.D., 1985, New observations on cell architecture and dynamics by video-enhanced contrast optical microscopy. Annu. Rev. Biophys. Biophysical Chem. 14:265–290.CrossRefGoogle Scholar
  6. Allen, R.D., Travis, J.L., Allen, N.S., and Yilmaz, H., 1981a, Video-enhanced contrast polarization (AVEC-POL) microscopy: A new method applied to the detection of birefringence in the motile reticulopodial network of Allogromia laticollaris, Cell Motil. 1:275–289.CrossRefGoogle Scholar
  7. Allen, R.D., Allen, N.S., and Travis, J.L., 1981b, Video-enhanced contrast, differential interference contrast (AVEC-DIC) microscopy: A new method capable of analyzing microtubule-related motility in the reticulopodial network of Allogromia laticollaris, Cell Motil. 1:291–302.CrossRefGoogle Scholar
  8. Amos, W.B., White, J.G., and Fordham, M., 1987, Use of confocal imaging in the study of biological structures, Appl. Opt. 26:3239–3243.PubMedCrossRefGoogle Scholar
  9. Åslund, N., Carlsson, K., Liljeborg, A., and Majlof, L., 1983, PHOIBOS, a microscope scanner designed for micro-fluorometric applications, using laser induced fluorescence. In: Proceedings of the Third Scandanavian Conference on Image Analysis, Studentliteratur, Lund, p. 338.Google Scholar
  10. Åslund, N., Liljeborg, A., Forsgren, P.-O., and Wahlsten, S., 1987, Three dimensional digital microscopy using the PHOIBOS scanner, Scanning 9:227–235.CrossRefGoogle Scholar
  11. Baxes, G.A., 1984, Digital Image Processing: A Practical Primer, Prentice-Hall, Englewood Cliffs, New Jersey.Google Scholar
  12. Berek, M., 1927, Grundlagen der Tiefenwahrnehmung im Mikroskop, Marburg Sitzungs Ber. 62:189–223.Google Scholar
  13. Born, M., and Wolf, E., 1980, Principles of Optics, 6th ed., Pergamon Press, Oxford, England.Google Scholar
  14. Boyde, A., 1985a, Tandem scanning reflected light microscopy (TSRLM). Part 2: Pre-MICRO 84 applications at UCL, Proc. R. Microsc. Soc. 20:131–139.Google Scholar
  15. Boyde, A., 1985b, Stereoscopic images in confocal (tandem scanning) microscopy, Science 230:1270–1272.PubMedCrossRefGoogle Scholar
  16. Boyde, A., 1987, Colour-coded stereo images from the tandem scanning reflected light microscope (TSRLM), J. Microsc. 146:137–142.PubMedCrossRefGoogle Scholar
  17. Brakenhoff, G.J., Blom, P., and Barends, P., 1979, Confocal scanning light microscopy with high aperture immersion lensesm, J. Micros. 117:219–232.CrossRefGoogle Scholar
  18. Brakenhoff, G.J., van der Voort, H.T.M., van Spronsen, E.A., Linnemans, W.A.M., and Nanninga, N., 1985, Three dimensional chromatin distribution in neuroblastoma nuclei shown by confocal scanning laser microscopy, Nature 317:748–749.PubMedCrossRefGoogle Scholar
  19. Brakenhoff, G.J., van der Voort, H.T.M., van Spronsen, E.A., and Nanninga, N., 1986, Three dimensional imaging by confocal scanning fluorescence microscopy. In: Recent Advances in Electron and Light Optical Imaging in Biology and Medicine, Vol. 483 (A. Somlyo, ed.), Ann. N.Y. Acad. Sci., New York, pp. 405–14.Google Scholar
  20. Brakenhoff, G.J., van Spronsen, E.A., van der Voort, H.T.M., and Nanninga, N., 1989, Three dimensional confocal fluorescence microscopy, Methods Cell Biol. 30:379–398.PubMedCrossRefGoogle Scholar
  21. Bright, G.R., Fisher, G.W., Rogowska, J., and Taylor, D.L., 1989, Fluorescence ratio imaging microscopy, Methods Cell Biol 30:157–192.PubMedCrossRefGoogle Scholar
  22. Cagnet, M., Françon, M., and Thrierr, J.C., 1962, Atlas of Optical Phenomena, Springer-Verlag, Berlin.Google Scholar
  23. Carlsson, K., Danielsson, P., Lenz, R., Liljeborg, A., Majlof, L., and Åslund, N., 1985, Three-dimensional microscopy using a confocal laser scanning microscope, Opt. Lett. 10:53–55.PubMedCrossRefGoogle Scholar
  24. Castleman, K.R., 1979, Digital Image Processing, Prentice-Hall, Englewood Cliffs, New Jersey.Google Scholar
  25. Castleman, K.R., 1987, Spatial and photometric resolution and calibration requirements for cell image analysis instruments, Appl. Opt. 26:3338–3342.PubMedCrossRefGoogle Scholar
  26. Castleman, K.R., 1993, Resolution and sampling requirements for digital image processing, analysis, and display. In: Electronic Light Microscopy (D. Shotton, ed.), Wiley-Liss, New York, pp. 71–94.Google Scholar
  27. Cox, I.J., and Sheppard, C.J.R., 1983, Scanning optical microscope incorporating a digital framestore and microcomputer, Appl. Opt. 22:1474–1478.PubMedCrossRefGoogle Scholar
  28. Cox, I.J., and Sheppard, C.J.R., 1986, Information capacity and resolution in an optical system, J. Opt. Soc. Am. 3:1152–1158.CrossRefGoogle Scholar
  29. Cox, G., and Sheppard, C., 1993, Effects of image deconvolution on optical sectioning in conventional and confocal microscopes, Bioimaging 1:82–95.CrossRefGoogle Scholar
  30. Cremer, C., and Cremer, T. 1978, Considerations on a laser-scanning-microscope with high resolution and depth of field, Microsc. Acta. 81:31–44.PubMedGoogle Scholar
  31. Davidovits, P., and Egger, M.D., 1971, Scanning laser microscope for biological investigations, Appl. Opt. 10:1615–1619.PubMedCrossRefGoogle Scholar
  32. Davidovits, P., and Egger, M.D., 1972, U.S. Patent #3,643,015, Scanning Optical Microscope.Google Scholar
  33. Egger, M.D., 1989, The development of confocal microscopy, Trends Neurosci. 12:11.CrossRefGoogle Scholar
  34. Egger, M.D., and Petráň, M., 1967, New reflected-light microscope for viewing unstained brain and ganglion cells, Science 157:305–307.PubMedCrossRefGoogle Scholar
  35. Ellis, G.W., 1966, Holomicrography: Transformation of image during reconstruction a posteriori, Science 154:1195–1196.PubMedCrossRefGoogle Scholar
  36. Ellis, G.W. 1978, Advances in visualization of mitosis in vivo. In: Cell Reproduction, in Honor of Daniel Mazia (E. Dirksen, D. Prescott, and C.F. Fox, eds.), Academic Press, San Diego, pp. 465–476.Google Scholar
  37. Ellis, G.W., 1979, A fiber-optic phase-randomizer for microscope illumination by laser, J. Cell Biol. 83:303a.Google Scholar
  38. Ellis, G.W., 1985, Microscope illuminator with fiber optic source integrator, J. Cell Biol. 101:83a.Google Scholar
  39. Ellis, G.W., 1988, Scanned aperture light microscopy. In: Proceedings of the Forty-Sixth Annual Meeting of EMSA, San Francisco Press, San Francisco, pp. 48–49.Google Scholar
  40. Fay, F.S., Fogarty, K.E., and Coggins, J.M., 1985, Analysis of molecular distribution in single cells using a digital imaging microscope. In: Optical Methods in Cell Physiology (P. De Weer and B.M. Salzberg, eds.), John Wiley & Sons, New York.Google Scholar
  41. Flory, L.E., 1951, The television microscope, Cold Spring Harbor Symp. Quant. Biol. 16:505–509.PubMedCrossRefGoogle Scholar
  42. Freed, J.J. and Engle, J.L., 1962, Development of the vibrating-mirror flying spot microscope for ultraviolet spectrophotometry, Ann. NY. Acad. Sci. 97:412–448.PubMedCrossRefGoogle Scholar
  43. Fuchs, H., Pizer, S.M., Heinz, E.R., Bloomberg, S.H., Tsai, L-C., and Strickland, D.C., 1982, Design and image editing with a space-filling 3D display based on a standard raster graphics system, Proc. Soc. Photo. Opt. Instrum. Eng. 367:117–127.Google Scholar
  44. Gabor, D., 1948, A new microscope principle, Nature 161:777–778.PubMedCrossRefGoogle Scholar
  45. Goldstein, S., 1989. In: Digitized Video Microscopy (B. Herman and K. Jacobson, eds.), Alan R. Liss, New York.Google Scholar
  46. Gonzales, R.C., and Wintz, P., 1987, Digital Image Processing, 2nd ed., Addison-Wesley, Reading, Massachusetts.Google Scholar
  47. Hamilton, D.K., and Wilson, T., 1984, Two dimensional phase imaging in the scanning optical microscope, Appl. Opt. 23:348–352.PubMedCrossRefGoogle Scholar
  48. Hansen, E.W., 1986, Appendex II. In: Video Microscopy (S. Inoué, ed.), Plenum Press, New York, pp. 467–475.Google Scholar
  49. Hard, R., Zeh, R., and Allen, R.D., 1977, Phase-randomized laser illumination for microscopy, J. Cell Sci. 23:335–343.PubMedGoogle Scholar
  50. Harris, J.L., 1964, Diffraction and resolving power, J. Opt. Soc. Am. 54:931–936.CrossRefGoogle Scholar
  51. Hecht, E., 1987, Optics, 2nd ed., Addison-Wesley, Reading, Massachusetts.Google Scholar
  52. Hell, S., Reiner, G., Cremer, C., and Stelzer, E.H.K., 1993, Aberrations in confocal fluorescence microscopy induced by mismatches in refractive index, J. Microsc. 169:391–405.CrossRefGoogle Scholar
  53. Hoffman, R., and Gross, L., 1975, Modulation contrast microscopy, Appl. Opt. 14:1169–1176.PubMedCrossRefGoogle Scholar
  54. Hopkins, H.H., 1951, The concept of partial coherence in optics, Proc. R. Soc. Lond. 208A:263.CrossRefGoogle Scholar
  55. Hopkins, H.H., and Barham, P.M., 1950, The influence of the condenser on microscopic resolution, Proc. R. Soc. Lond. 63B:737–744.Google Scholar
  56. Ingelstam, E., 1956, Different forms of optical information and some interrelations between them. In: Problems in Contemporary Optics, Istituto Nazionale di Ottica, Arcetri-Firenze, pp. 128–143.Google Scholar
  57. Inoué S., 1981, Video image processing greatly enhances contrast, quality, and speed in polarization-based microscopy, J. Cell Biol. 89:346–356.PubMedCrossRefGoogle Scholar
  58. Inoué, S., 1986, Video Microscopy, Plenum Press, New York.Google Scholar
  59. Inoué, S., 1988, Progress in video microscopy, CellMotil. Cytoskel. 10:13–17.CrossRefGoogle Scholar
  60. Inoué, S., 1989a, Imaging of unresolved objects, supperresolution, and precision of distance measurement, with video microscopy, Methods Cell Biol. 30:85–112.PubMedCrossRefGoogle Scholar
  61. Inoué, S., 1989b, Video enhancement and image processing in light microscopy. Part I: Video microscopy. Part II: Digital image processing, American Laboratory (April 1989), pp. 52–70.Google Scholar
  62. Inoué, S., 1989c, Whither video microscopy? Towards 4D imaging at the highest resolution of the light microscope. In: Digitized Video Microscopy (B. Herman and K. Jacobson, eds.), Alan R. Liss, New York.Google Scholar
  63. Inoué, S., 1994, Ultra-thin optical sectioning and dynamic volume investigation with conventional light microscopy. In: Three-Dimensional Confocal Microscopy (J.K. Stevens, L.R. Mills, and J. Trogadis, eds.), Academic Press, San Diego, pp. 397–419.CrossRefGoogle Scholar
  64. Inoué, S., and Inoué, T.D., 1986, Computer-aided stereoscopic video reconstruction and serial display from high-resolution light-microscope optical sections. In: Recent Advances in Electron and Light Optical Imaging in Biology and Medicine (A. Somlyo, ed.), Vol. 483, Ann. N.Y. Acad. Sci., New York, pp. 392–404.Google Scholar
  65. Inoué, S., and Oldenbourg, R., 1994, Optical instruments: Microscopes. In: Handbook of Optics (M. Bass, ed.), 2nd ed., Vol. 2, McGraw-Hill, New York, Chapter 17.Google Scholar
  66. Koester, C.J., 1980, Scanning mirror microscope with optical sectioning characteristics: Applications in ophthalmology, Appl. Opt. 19:1749–1757.PubMedCrossRefGoogle Scholar
  67. Kubota, H., and Inoué, S., 1959, Diffraction images in the polarizing microscope, J. Opt. Soc. Am. 49:191–198.PubMedCrossRefGoogle Scholar
  68. Leith, E.N., and Upatnieks, J., 1963, Wavefront reconstruction with continuous-tone objects, J. Opt. Soc. Am. 53:1377–1381.CrossRefGoogle Scholar
  69. Leith, E.N., and Upatnieks, J., 1964, Wavefront reconstruction with diffused illumination and 3D objects, J. Opt. Soc. Am. 54:1295–1301.CrossRefGoogle Scholar
  70. Lewin, R., 1985, New horizons for light microscopy, Science 230:1258–1262.PubMedCrossRefGoogle Scholar
  71. Linfoot, E.H., and Wolf, E., 1953, Diffraction images in systems with an annular aperture, Proc. Phys. Soc. B 66:145–149.Google Scholar
  72. Linfoot, E.H., and Wolf, E., 1956, Phase distribution near focus in an aberration-free diffraction image, Proc. Phys. Soc. B 69:823–832.CrossRefGoogle Scholar
  73. McCarthy, J.J., and Walker, J.S., 1988, Scanning confocal optical microscopy, EMSA Bull. 18:75–79.Google Scholar
  74. Minsky, M., 1957, U.S. Patent #3013467, Microscopy Apparatus.Google Scholar
  75. Minsky, M., 1988, Memoir on inventing the confocal scanning microscope, Scanning 10:128–138.CrossRefGoogle Scholar
  76. Montgomery, P.O., Roberts, F., and Bonner, W., 1956, The flying-spot monochromatic ultra-violet television microscope, Nature 177: 1172.PubMedCrossRefGoogle Scholar
  77. Nipkow, P., 1884, German Patent #30,105.Google Scholar
  78. Nomarski, G., 1955, Microinterférométre différentiel à ondes polarisées, J. Phys. Radium 16:S9–S13.Google Scholar
  79. Oldenbourg, R., Terada, H., Tiberio, R., and Inoué, S., 1993, Image sharpness and contrast transfer in coherent confocal microscopy. J. Microsc. 172:31–39.PubMedCrossRefGoogle Scholar
  80. Petráň, M., Hadravsky, M., Egger, D., and Galambos, R., 1968, Tandem-scanning reflected-light microscope, J. Opt. Soc. Am. 58:661–664.CrossRefGoogle Scholar
  81. Quate, C.F., 1980, Microwaves, acoustic and scanning microscopy. In: Scanned Image Microscopy (E.A. Ash, ed.), Academic Press, San Diego, pp. 23–55.Google Scholar
  82. Schotten, D., ed., 1993, Electronic light microscopy: The Principles and Practice of Video-enhanced Contrast, Digital Intensified Fluorescence, and Confocal Scanning Light Microscopy, John Wiley & Sons, New York.Google Scholar
  83. Sharnoff, M., Brehm, L., and Henry, R., 1986, Dynamic structures through microdifferential holography, Biophys. J. 49:281–291.PubMedCrossRefGoogle Scholar
  84. Sheppard, C.J.R., and Choudhury, A., 1977, Image formation in the scanning microscope, Optica 24:1051.CrossRefGoogle Scholar
  85. Sheppard, C.J.R., Gannaway, J.N., Walsh, D., and Wilson, T., 1978, Scanning Optical Microscope for the Inspection of Electronic Devices, Microcircuit Engineering Conference, Cambridge.Google Scholar
  86. Sher, L.D., and Barry, C.D., 1985, The use of an oscillating mirror for 3D displays. In: New Methodologies in Studies of Protein Configuration (T.T. Wu, ed.), Van Nostrand-Reinhold, Princeton, New Jersey.Google Scholar
  87. Shimizu, Y., and Takenaka, H., 1994, Microscope objective design. In: Advances in Optical and Electron Microscopy (C Sheppard and T. Mulvey, eds.), Academic Press, San Diego, Vol. 14, pp. 249–334.Google Scholar
  88. Smith, L.W., and Osterberg, H., 1961, Diffraction images of circular self-radiant disks, J. Opt. Soc. Am. 51:412–414.CrossRefGoogle Scholar
  89. Stevens, J.K., Mills, L.R., and Trogadis, J., 1994, Three-Dimensional Confocal Microscopy, Academic Press, San Diego.Google Scholar
  90. Streibl, N., 1985, Three dimensional imaging by a microscope, J. Opt. Soc. Am. A 2:121–127.CrossRefGoogle Scholar
  91. Suzuki, T., and Hirokawa, Y., 1986, Development of a real-time scanning lasermicroscope for biological use, Appl. Opt. 25:4115–4121.PubMedCrossRefGoogle Scholar
  92. Tanasugarn, L., McNeil, P., Reynolds, G.T., and Taylor, D.L., 1984, Microspec-trofluorometry by digital image processing: Measurement of cytoplasmic pH, J. Cell Biol. 89:717–724.CrossRefGoogle Scholar
  93. Tolardo di Francia, G., 1955, Resolving power and information, J. Opt. Soc. Am. 45:497–501.CrossRefGoogle Scholar
  94. Tsien, R.Y., 1989, Fluorescent indicators of ion concentration, Methods Cell Biol. 30:127–156.PubMedCrossRefGoogle Scholar
  95. White, J.G., Amos, W.B., and Fordham, M., 1987, An evaluation of confocal versus conventional imaging of biological structures by fluorescence light microscopy, J. Cell Biol. 105:41–48.PubMedCrossRefGoogle Scholar
  96. Wijnaendts van Resandt, R.W., Marsman, H.J.B., Kaplan, R., Davoust, J., Stelzer, E.H.K., and Strickler, R., 1985, Optical fluorescence microscopy in three dimensions: Microtomoscopy, J. Microsc. 138:29–34.CrossRefGoogle Scholar
  97. Wilke, V., Gödecke, U., and Seidel, P., 1983, Laser-scan-mikroskop, Laser Optoelecktron. 15:93–101.Google Scholar
  98. Wilson, T., 1985, Scanning optical microscopy, Scanning 7:79–87.CrossRefGoogle Scholar
  99. Wilson, T., 1990, Confocal Microscopy, Academic Press, London.Google Scholar
  100. Wilson, T., and Sheppard, C., 1984, Theory and Practice of Scanning Optical Microscopy, Academic Press, London.Google Scholar
  101. Wilson, T., Gannaway, J.N., and Johnson, P., 1980, A scanning optical microscope for the inspection of semiconductor materials and devices, J. Microsc. 118:390–314.CrossRefGoogle Scholar
  102. Xiao, G.Q., and Kino, G.S., 1987, A real-time confocal scanning optical microscope. In: Proc. SPIE, Vol. 809, Scanning Imaging Technology (T. Wilson and L. Balk, eds.), pp. 107–113.Google Scholar
  103. Young, J.Z., and Roberts, F., 1951, A flying-spot microscope, Nature 167:231. Zernicke, V.F., 1935, Das Phasenkontrastverfahren bei der mikroskopischen Beobachtung, Z. Tech. Phys. 16:454–457.Google Scholar
  104. Zworykin, V.K., 1934, The iconoscope—a modern version of the electric eye, Proc. IRE 22:16–32.Google Scholar

Copyright information

© Springer Science+Business Media New York 1995

Authors and Affiliations

  • Shinya Inoué
    • 1
  1. 1.Marine Biological LaboratoryWoods HoleUSA

Personalised recommendations