Skip to main content

Computational Results for an Efficient Implementation of the GOP Algorithm and Its Variants

  • Chapter
Global Optimization in Engineering Design

Part of the book series: Nonconvex Optimization and Its Applications ((NOIA,volume 9))

Abstract

Recently, Floudas and Visweswaran (1990, 1993) proposed a global optimization algorithm (GOP) for the solution of a large class of nonconvex problems through a series of primal and relaxed dual subproblems that provide upper and lower bounds on the global solution. Visweswaran and Floudas (1995a) proposed a reformulation of the algorithm in the framework of a branch and bound approach that allows for an easier implementation. They also proposed an implicit enumeration of all the nodes in the resulting branch and bound tree using a mixed integer linear (MILP) formulation, and a linear branching scheme that reduces the number of subproblems from exponential to linear. In this paper, a complete implementation of the new versions of the GOP algorithm, as well as detailed computational results of applying the algorithm to various classes of nonconvex optimization problems is presented. The problems considered including pooling and blending problems, problems with separation and heat exchanger networks, robust stability analysis with real parameter uncertainty, and concave and indefinite quadratic problems of medium size.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. I. P. Androulakis, V. Visweswaran, and C. A. Floudas. Distributed Decomposition-Based Approaches in Global Optimization. In Proceedings of State of the Art in Global Optimization: Computational Methods and Applications (Eds. C.A. Floudas and P.M. Pardalos),Kluwer Academic Series on Nonconvex Optimization and Its Applications, 1995. To Appear.

    Google Scholar 

  2. T.E. Baker and L.S. Lasdon. Successive linear programming at Exxon. Mgmt. Sci., 31 (3): 264, 1985.

    Article  MATH  Google Scholar 

  3. A. Ben-Tal and V. Gershovitz. Computational Methods for the Solution of the Pooling/Blending Problem. Technical report, Technion-Israel Institute of Technology, Haifa, Israel, 1992.

    Google Scholar 

  4. R. R. E. de Gaston and M. G. Sofonov. Exact calculation of the multiloop stability margin. Ieee Transactions on Automatic Control, 2: 156, 1988.

    Article  Google Scholar 

  5. C. A. Floudas and A. Aggarwal. A decomposition strategy for global optimum search in the pooling problem. ORSA Journal on Computing, 2 (3): 225, 1990.

    Article  MATH  Google Scholar 

  6. C. A. Floudas, A. Aggarwal, and A. R. Ciric. Global optimum search for nonconvex NLP and MINLP problems. C and ChE, 13 (10): 1117, 1989.

    Google Scholar 

  7. C. A. Floudas and A. R. Ciric. Strategies for overcoming uncertainties in heat exchanger network synthesis. Comp. and Chem. Eng., 13 (10): 1133, 1989.

    Article  Google Scholar 

  8. C. A. Floudas and P. M. Pardalos. A Collection of Test Problems for Constrained Global Optimization Algorithms, volume 455 of Lecture Notes in Computer Science. Springer-Verlag, Berlin, Germany, 1990.

    Google Scholar 

  9. C. A. Floudas and V. Visweswaran. A global optimization algorithm (GOP) for certain classes of nonconvex NLPs: I. theory. CandChE, 14: 1397, 1990.

    Google Scholar 

  10. C. A. Floudas and V. Visweswaran. A primal-relaxed dual global optimization approach. J. Optim. Theory and Appl., 78 (2): 187, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  11. R. E. Griffith and R. A. Stewart. A nonlinear programming technique for the optimization of continuous processesing systems. Manag. Sci., 7: 379, 1961.

    Article  MathSciNet  MATH  Google Scholar 

  12. Studies of the Behaviour of Recursion for the Pooling Problem. ACM SIGMAP Bulletin, 25: 19, 1978.

    Google Scholar 

  13. Behaviour of Recursion Model - More Studies. SIGMAP Bulletin, 26: 22, 1979.

    Google Scholar 

  14. L.S. Lasdon, A.D. Waren, S. Sarkar, and F. Palacios-Gomez. Solving the Pooling Problem Using Generalized Reduced Gradient and Successive Linear Programming Algorithms. ACM SIGMAP Bulletin, 27: 9, 1979.

    Article  Google Scholar 

  15. W. B. Liu and C. A. Floudas. A Remark on the GOP Algorithm for Global Optimization. J. Global Optim., 3: 519, 1993.

    Article  MathSciNet  MATH  Google Scholar 

  16. C.D. Maranas and C.A. Floudas. A Global Optimization Approach for Lennard-Jones Microclusters. J. Chem. Phys., 97 (10): 7667, 1992.

    Article  Google Scholar 

  17. C.M. McDonald and C.A. Floudas. A user guide to GLOPEQ. Computer Aided Systems Laboratory, Chemical Engineering Department, Princeton University, NJ, 1994.

    Google Scholar 

  18. C.M. McDonald and C.A. Floudas. Global Optimization for the Phase Stability Problem. AICHE Journal, 41: 1798, 1995.

    Article  Google Scholar 

  19. F. Palacios-Gomez, L.S. Lasdon, and M. Engquist. Nonlinear Optimization by Successive Linear Programming. Mgmt. Sci., 28 (10): 1106, 1982.

    Article  MATH  Google Scholar 

  20. A parallel algorithm for constrained concave quadratic global minimization. Mathematical Programming, 42: 421, 1988.

    Article  MathSciNet  Google Scholar 

  21. Polycarpos Psarris and C. A. Floudas. Robust Stability Analysis of Linear and Nonlinear Systems with Real Parameter Uncertainty. Journal of Robust and Nonlinear Control,1994. Accepted for publication.

    Google Scholar 

  22. I. Quesada and I. E. Grossmann. Global Optimization Algorithm for Heat Exchanger Networks. IandEC Res., 32: 487, 1993.

    Google Scholar 

  23. H. Sherali and C. H. Tuncbilek. Tight Reformulation-Linearization Technique Representations for Solving Nonconvex Quadratic Programming Problems. Submitted for Publication, 1994.

    Google Scholar 

  24. V. Visweswaran and C. A. Floudas. New Formulations and Branching Strategies for the GOP Algorithm In Global Optimization in Engineering Design, (Ed.) I. E. Grossmann, Kluwer Book Series in Nonconvex Optimization and Its Applications, Chapter 3, 1995a.

    Google Scholar 

  25. V. Visweswaran and C. A. Floudas. cGOP: A User’s Guide. Princeton University, Princeton, New Jersey, 1995b.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1996 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

Visweswaran, V., Floudas, C.A. (1996). Computational Results for an Efficient Implementation of the GOP Algorithm and Its Variants. In: Grossmann, I.E. (eds) Global Optimization in Engineering Design. Nonconvex Optimization and Its Applications, vol 9. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-5331-8_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-5331-8_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-4754-3

  • Online ISBN: 978-1-4757-5331-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics