Gangliosides as Differential Modulators of Membrane-Bound Protein Kinase Systems

  • Robert K. Yu
  • James R. Goldenring
  • John Y. H. Kim
  • Robert J. DeLorenzo
Part of the FIDIA Research Series book series (FIDIA, volume 6)


Gangliosides are sialic acid-containing glycosphingolipids found in the plasma membrane of virtually all vertebrate tissues and are particularly abundant in the nervous system (Ledeen and Yu, 1982; Ledeen, 1983; Ando, 1983; Ledeen, 1985). Gangliosides comprise a major part of the glycoconjugate network extending from the neuronal membrane surface. Recent investigations suggest that gangliosides may exert a critical role in the regulation of cell growth and differentiation (Hakomori, 1981; 1983; Ledeen et al., 1984; Ando, 1983; Ledeen, 1984). Nevertheless, the molecular events which underlie the physiological and cellular events remain unresolved. Recent investigations have emphasized the importance of Ca++-dependent kinase systems in the regulation of many dynamic cellular processes (Nestler et al., 1984; Cheung, 1982; DeLorenzo and Goldenring, 1984). In particular, the Ca+ +/calmodulin-dependent kinase (Kennedy, 1983) and the Ca+ + /phospholipid-dependent kinase (C-kinase) system (Nishizuka, 1984a,b) have been implicated as major regulators of cellular physiology. Gangliosides bind Ca+ + with high affinity (Abramson et al., 1972; Probst et al., 1979; 1984; Quarles and Folch-Pi, 1965; Rahmann, 1983), and thus, their possible interaction with Ca+ + -dependent kinases is of great interest. We present here our recent investigations which indicate that gangliosides may exert opposite effects on these Ca+ +-dependent kinases with inhibition of C-kinase and stimulation of calmodulin-dependent kinase (Goldenring et al., 1985; Kim et al., 1986).


Myelin Basic Protein Brain Membrane High Performance Thin Layer Chromatography Dalton Protein Phosphocellulose Paper 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



ethylene -bis(oxyethylenenitrile) tetraacetic acid


myelin basic protein




concentration for 50% inhibition


sodium dodecylsulphate


polyacrylamide gel electrophoresis.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abramson MB, Yu RK, Zaby V (1972) Biochim Biophys Acta 280: 365–372.PubMedCrossRefGoogle Scholar
  2. Albert KA, Wu WC-S, Nairn AC, Greengard P (1984) Proc Natl Acad Sei USA 818: 3622–3625.CrossRefGoogle Scholar
  3. Ando S (1983) Neurochem Int 5: 507–537.PubMedCrossRefGoogle Scholar
  4. Ando S, Yu RK (1977) J Biol Chem 252: 6247–6250.PubMedGoogle Scholar
  5. Ando S, Chang N-C, Yu RK (1978) Anal Biochem 89: 437–450.PubMedCrossRefGoogle Scholar
  6. Bennet MK, Erondu NE, Kennedy MB (1983) J Biol Chem 258: 12735–12744.Google Scholar
  7. Bradford MM (1976) Anal Biochem 72: 248–254.PubMedCrossRefGoogle Scholar
  8. Bremer EG, Hakomori S-I, Bowen-Pope DF, Raine E, Ross R (1984) J Biol Chem 259: 6818–6825.PubMedGoogle Scholar
  9. Burke BE and DeLorenzo RJ (1982) Brain Res 236: 393–415.PubMedCrossRefGoogle Scholar
  10. Cheung WY (1982) Fed Proc 41: 2253–2257.PubMedGoogle Scholar
  11. Cohen P (1982) Nature 296: 613–620.PubMedCrossRefGoogle Scholar
  12. Davis CW and Daly JW (1980) Proc Pharmacol 17: 206–211.Google Scholar
  13. DeLorenzo RJ, Burdette S, Holderness J (1981) Science 213: 546–549.PubMedCrossRefGoogle Scholar
  14. DeLorenzo RJ and Goldenring JR (1984) In: Marangos RJ, Campbell IC, Cohen RM (eds): Brain Receptor Methodologies. Academic Press, pp. 191–207.Google Scholar
  15. Hakomori S (1981) Ann Rev Biochem 50: 733–764.PubMedCrossRefGoogle Scholar
  16. Hakomori S (1983) In: Kanfer JN and Hakomori S (eds): Sphingolipid Biochemistry. Plenum Press, New York, pp. 327–379.CrossRefGoogle Scholar
  17. Kasai N, Sillerud LO, Yu RK (1982) Lipids 173: 107–110.CrossRefGoogle Scholar
  18. Kennedy MB (1983) Ann Rev Neurosci 6: 493–526.PubMedCrossRefGoogle Scholar
  19. Kim JYH, Goldenring JR, DeLorenzo RJ, Yu RK (1986) J Neurosci Res 15: 159–166.PubMedCrossRefGoogle Scholar
  20. Kishimoto A, Kajikawa N, Shiota M, Nishizuka Y (1983) J Biol Chem 258: 1156–1164.PubMedGoogle Scholar
  21. Ledeen RW (1984) J Neurosci Res 12: 147–159.PubMedCrossRefGoogle Scholar
  22. Ledeen R (1985) TINS 8: 169–174.Google Scholar
  23. Ledeen RW and Yu RK (1982) Methods Enzymol 83: 139–191.PubMedCrossRefGoogle Scholar
  24. Ledeen RW, Yu RK, Eng LF (1973) J Neurochem 218: 829–839.CrossRefGoogle Scholar
  25. Ledeen RW, Yu RK, Rapport MM, Suzuki K (eds) (1984) Ganglioside Structure, Function, and Biomedical Potential. Adv Exp Med Biol, Vol. 174, Plenum Press, New York.Google Scholar
  26. Maggio B, Cumar FA, Caputto R (1980) Biochem J 1889: 435–440.Google Scholar
  27. Mazzei GJ, Katoh N, Kuo JF (1982) Biochem Biophys Res Comm 109: 1129–1133.PubMedCrossRefGoogle Scholar
  28. Nestler EJ, Walaas SI, Greengard P (1984) Science 225: 1357–1364.PubMedCrossRefGoogle Scholar
  29. Niggli V, Adunyah ES, Carafoli E (1981) J Biol Chem 256: 8588–8592.PubMedGoogle Scholar
  30. Nishizuka Y (1984a) Science 225: 1365–1370. Nishizuka Y (1984b) Nature 308: 693–698.Google Scholar
  31. Norton WT and Poduslo SE (1973) J Neurochem 21: 749–758.PubMedCrossRefGoogle Scholar
  32. Partington CR and Daly JW (1979) Mol Pharmac 15: 484–491.Google Scholar
  33. Petrali EH and Sulakhe PV (1982) Prog Brain Res 56: 125–144.PubMedCrossRefGoogle Scholar
  34. Probst W, Rosner H, Wiegandt H, Rahmann H (1979) Hoppe-Seyler’s Z Physiol Chem 360: 979–986.PubMedCrossRefGoogle Scholar
  35. Probst W, Möbius D, Rahmann H (1984) Cell Molec Neurobiol 4: 157–176.PubMedCrossRefGoogle Scholar
  36. Quarles R and Folch-Pi J (1965) J Neurochem 12: 543–553.PubMedCrossRefGoogle Scholar
  37. Qi DF, Schatzman RC, Mazzei GJ, Turner RS, Raynor RL, Liao S, Kuo JF (1983) Biochem J 231: 281–288.Google Scholar
  38. Rahmann H (1983) Neurochem Int 5: 539–547.PubMedCrossRefGoogle Scholar
  39. Schatzman RC, Grifo JA, Merrick WC, Kuo JF (1983a) FEBS Lett 159: 167–170.PubMedCrossRefGoogle Scholar
  40. Svennerholm L (1957) Biochim Biophys Acta 24: 604–611.PubMedCrossRefGoogle Scholar
  41. Tsuji S, Nakajima J, Sasaki T, Nagai Y (1985) J Biochem 97: 969–972.PubMedGoogle Scholar
  42. Turner RS, Chou C-HJ, Kibler RF, Kuo JF (1982) J Neurochem 39: 1397–1404.PubMedCrossRefGoogle Scholar
  43. Turner RS, Chou C-HJ, Mazzei GJ, Dembure P, Kuo JF (1984) J Neurochem 43: 1257–1264.PubMedCrossRefGoogle Scholar
  44. Vincenzi FF (1982) Ann N Y Acad Sei 402: 368–380.CrossRefGoogle Scholar
  45. Vincenzi FF, Adunyah ES, Niggli V, Carafoli E (1982) Cell Calcium 3: 545–559.PubMedCrossRefGoogle Scholar
  46. Waisman DM, Gimble JM, Goodman DBP, Rasmussen H (1981) J Biol Chem 256: 409–414.PubMedGoogle Scholar
  47. Wise BC and Kuo JF (1983) Biochem Pharm 32: 1259–1265.PubMedCrossRefGoogle Scholar
  48. Witt JJ and Roskoski R (1975) Anal Biochem 66: 253–258.PubMedCrossRefGoogle Scholar
  49. Wu WC-S, Walaas SI, Nairn AC, Greengard P (1982) Proc Natl Acad Sei U S A 79: 5249–5253.CrossRefGoogle Scholar
  50. Yohe HC, Jacobson RI, Yu RK (1983) J Neurosci Res 9: 401–412.PubMedCrossRefGoogle Scholar
  51. Yu RK, Sillerud LO, Schafer DE, Prestegard JH, Königsberg W (1981) Trans Amer Soc Neurochem 12: 78.Google Scholar
  52. Yu RK, Goldenring JR, DeLorenzo RJ (1984) INSERM 1984 126: 335–354.Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • Robert K. Yu
    • 1
  • James R. Goldenring
    • 1
    • 2
  • John Y. H. Kim
    • 1
  • Robert J. DeLorenzo
    • 1
    • 3
  1. 1.Department of NeurologyYale University School of MedicineNew HavenUSA
  2. 2.Surgical Service (112)West Haven VA Medical CenterWest HavenUSA
  3. 3.Department of NeurologyMedical College of VirginiaRichmondUSA

Personalised recommendations