Effect of GM1 on the Alterations Induced by Selective Neurotoxins in the Developing CNS

  • G. Vantini
  • B. Figliomeni
  • R. Zanoni
  • A. Gorio
  • G. Jonsson
  • M. Fusco
Part of the FIDIA Research Series book series (FIDIA, volume 6)


The effect of the monosialoganglioside GM1 administration on the alterations induced in rat CNS by neurotoxins selective for transmitter-identified neurons has been studied by employing both neuro- and immunocytochemical techniques. 5,7-dihydroxytryptamine (5,7-HT), 6-hydroxydopamine (6-OH-DA) and capsaicin have been used to induce damage to serotonin (5-HT)-, noradrenaline (NA)- and substance P (SP)- containing neurons, respectively. In experiments employing 5,7-HT and 6-OH-DA it is found that the primary neurodegenerative actions of these neurotoxins on NA and 5-HT neurons are not modified by GM1 administration. In contrast under chronic conditions, GM1 diminishes the extent of the alterations induced by 5,7-HT and 6-OH-DA. Moreover, GM1 is able to reduce the capsaicin-induced decrease of SP nerve terminal density in the superficial layers of the dorsal horns of lumbar spinal sections. The present results are consistent with the view that GM1 has a protective and/or regrowth-stimulating effect on damaged central neurons.


Nerve Growth Factor Dorsal Horn Lumbar Spinal Cord Nerve Density Neonatal Administration 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agnati LF, Fuxe K, Calzà L, Benfenati F, Cavicchioli L, Toffano G, Goldstein M (1983) Gangliosides increase the survival of lesioned nigral dopamine neurons and favour the recovery of dopaminergic synaptic function in striatum of rats by collateral sprouting. Acta Physiol Scand 119: 347–363.PubMedCrossRefGoogle Scholar
  2. Ando S (1983) Gangliosides in the nervous system. Neurochem Int 5: 507–537.PubMedCrossRefGoogle Scholar
  3. Bianchi R, Janigro D, Milan F, Giudici G, Gorio A (1986) In vivo treatment with GM1 prevents the rapid decay of ATPase activities and mitochondrial damage in hippocampal slices. Brain Res 364: 400–404.PubMedCrossRefGoogle Scholar
  4. Ceccarelli B, Aporti F, Finesso M (1976) Effect of brain ganglioside on functional recovery in experimental regeneration and reinnervation. Advanc Exp Med Biol 21: 275–293.CrossRefGoogle Scholar
  5. Coons AH (1958) Fluorescent antibody methods. In: Canielli JF (ed): General cytochemical methods. 1, Academic Press, New York, pp. 399–422.Google Scholar
  6. Consolazione A, Milstein C, Wright B, Cuello AC (1981) Immunocytochemical detection of serotonin with monoclonal antibodies. J Histochem Cytochem 12: 1425–1430.CrossRefGoogle Scholar
  7. Cuello AC, Galfre G, Milstein C (1979) Detection of substance P in the central nervous system by a monoclonal antibody. Proc Natl Acad Sci USA, 76: 3532–3536.PubMedCrossRefGoogle Scholar
  8. Cuello AC, Gamse R, Holzer P, Lembeck F (1981) Substance P immunoreactive neurons following neonatal administration of capsaicin. Naunyn-Schmiederberg’s Arch Pharmacol 229: 219–224.Google Scholar
  9. Doherty P, Dickson JG, Flanigan TP, Walsh FS (1985) Ganglioside GM1 does not initiate, but enhances neurite regeneration of nerve growth factor-dependent sensory neurones. J Neurochem 44: 1259–1265.PubMedCrossRefGoogle Scholar
  10. Felice LJ, Felice JD, Kissinger PT (1978) Determination of catecholamines in rat brain parts by reverse-phase ion-pair liquid chromatography. J Neurochem 31: 1461–1465.PubMedCrossRefGoogle Scholar
  11. Ferrari G, Fabris M, Gorio A (1983) Gangliosides enhance neurite outgrowth in PC12 cells. Develop Brain Res 8: 215–221.CrossRefGoogle Scholar
  12. Fusco M, Donà M, Tessari F, Hallman H, Jonsson G, Gorio A (1986) GM1 ganglioside counteracts selective neurotoxin-induced lesion of developing serotonin neurons in rat spinal cord. J Neurosci Res, in press.Google Scholar
  13. Gamse R, Holzer P, Lembeck F (1980) Decrease of substance P in primary afferent neurons and impairment of neurogenic plasma extravasation by capsaicin. Br J Pharmacol 68: 207–213.PubMedCrossRefGoogle Scholar
  14. Gorio A, Carmignoto G, Facci L, Finesso M (1980) Motor sprouting induced by ganglioside treatment. Possible implications for gangliosides on neuronal growth. Brain Res 197: 236–241.PubMedCrossRefGoogle Scholar
  15. Gorio A, Zanoni R, Marini P (1983) Muscle reinnervation. III. Motoneuron sprouting capacity: enhancement by exogenous gangliosides. Neuroscience 8: 417–429.PubMedCrossRefGoogle Scholar
  16. Gorio A (1986) Ganglioside enhancement of neuronal differentiation, plasticity and repair. J Clin Neurobiol, in press.Google Scholar
  17. Hadjiconstantinou M, Paxton RC, Neff NH (1986) Administration of GMI ganglioside restores the dopamine content in striatum after chronic treatment with MPTP. Neuropharmacology, in press.Google Scholar
  18. Jancsò G, Kiraly E, Jancsò-Gàbor A (1977) Pharmacologically-induced selective degeneration of chemosensitive primary sensory neurons. Nature 270: 741–743.PubMedCrossRefGoogle Scholar
  19. Janigro D, Di Gregorio F, Vyskocil F, Gorio A (1984) Gangliosides’dual made of action: a working hypothesis. J Neurosci Res 12: 499–509.PubMedCrossRefGoogle Scholar
  20. Jonsson G, Hallman H (1982a) Response of central monoamine neurons following an early neurotoxic lesion. Bibl Anat 23: 76–92.PubMedGoogle Scholar
  21. Jonsson G, Hallman H (1982b) Modulation of 6-hydroxydopamine induced alteration of the postnatal development of central noradrenaline neurons. Brain Res Bull 9: 635–640.PubMedCrossRefGoogle Scholar
  22. Jonsson G, Sachs C (1982) Changes in the development of central noradrenaline neurons after axonal lesions neonatally. Brain Res Bull 9: 641–650.PubMedCrossRefGoogle Scholar
  23. Jonsson G (1983) Chemical lesioning techniques: Monoamine neurotoxins. In: Björklund A, Hökfelt T (eds): Handbook of Chemical Neuroanatomy, Vol 1; Methods in Chemical Neuroanatomy. Elsevier, Amsterdam, pp. 463–507.Google Scholar
  24. Jonsson G, Gorio A, Hallman H, Janigro D, Kojima H, Zanoni R (1984a) Effect of GM1 ganglioside on neonatally neurotoxin-induced degeneration of serotonin neurons in the rat brain. Develop Brain Res 16: 171–180.CrossRefGoogle Scholar
  25. Jonsson G, Gorio A, Hallman H, Janigro D, Kojima H, Luthman J, Zanoni R (1984b) Effects of GM1 ganglioside on developing and mature serotonin and noradrenaline neurons lesion-ed by selective neurotoxins. J Neurosci Res 12: 459–475.PubMedCrossRefGoogle Scholar
  26. Karpiak SE (1983) Ganglioside treatment improves recovery of alteration behavior after unilateral entorhinal cortex lesion. Exp Neurol 81: 330–339.PubMedCrossRefGoogle Scholar
  27. Karpiak SE (1984) Recovery of function after CNS damage enhanced by gangliosides. In: Ledeen RW, Yu R, Rapport MM, Suzuki K (eds): Ganglioside Structure, Function and Biomedical Potential. Plenum Press, New York, pp. 489–497.CrossRefGoogle Scholar
  28. Karpiak SE, Vilim F, Mahadik SP (1984) Gangliosides accelerate rat neonatal learning and levels of cortical acetylcholinesterases. Dev Neurosci 6: 127–135.CrossRefGoogle Scholar
  29. Kasarskis E, Karpiak S, Rapport MM, Yu R; Bass N (1981) Abnormal maturation of cerebral cortex and behavior in adult rats after neonatal administration of antibodies to GM1 ganglioside. Develop Brain Res 1: 25–35.CrossRefGoogle Scholar
  30. Keller R, Oke A, Mefford J, Adams RN (1976) Liquid chromatographic analysis of catecholamines routine assay for regional brain mapping. Life Sci 9: 995–1004.CrossRefGoogle Scholar
  31. Kojima H, Gorio A, Janigro D, Jonsson G (1984) GM1 ganglioside enhances regrowth of noradrenaline nerve terminals in rat cerebral cortex lesioned by the neurotoxin 6-hydroxydopamine. Neuroscience 13: 1011–1022.PubMedCrossRefGoogle Scholar
  32. Ledeen RW (1983) Gangliosides. In: Lajtha A (ed): Handbook of Neurochemistry, Vol. 3. Plenum, New York, pp. 41–90.Google Scholar
  33. Ledeen RW (1984) Biology of gangliosides: neuritogenic and neuronotrophic properties. J Neurosci Res 12: 147–159.PubMedCrossRefGoogle Scholar
  34. Leon A, Facci L, Benvegnù D, Toffano G (1982) Morphological and biochemical effects of gangliosides in neuroblastoma cells. Dev Neurosci 5: 108–114.PubMedCrossRefGoogle Scholar
  35. Mayer GS, Shoup RE (1983) Simultaneous multiple electrode liquid chromatographic-electrochemical assay for catecholamines, indolamines and metabolites in brain tissue. J Cromatogr 255: 533–544.CrossRefGoogle Scholar
  36. Monroe PJ, Smith DJ (1983) Characterization of multiple [3H]-5-Hydroxytryptamine binding sites in rat spinal cord tissue. J Neurochem 2: 349–355.CrossRefGoogle Scholar
  37. Nagy JI, Vincent SP, Staines WA, Fibiger HC, Reisine TD, Yamamura HI (1980) Neurotoxic action of capsaicin on spinal substance P neurons. Brain Res 186: 435–44.PubMedCrossRefGoogle Scholar
  38. Oderfeld-Nowak B, Skup M, Ulas J, Jezierska M, Gradkowska M, Zaremba M (1984) Effect of GM1 ganglioside treatment of postlesion responses of cholinergic enzymes in rat hippocampus after various partial deafferentiations. J Neurosci Res 12: 409–420.PubMedCrossRefGoogle Scholar
  39. Otten U, Lorez HP, Businger F (1983) Nerve growth factor antagonizes the neurotoxic action of capsaicin on primary sensory neurons. Nature 301: 515–517.PubMedCrossRefGoogle Scholar
  40. Peroutka SJ, Snyder SH (1979) Multiple serotonin receptors: differential binding of [3H]-5-Hydroxytryptamine, [3H]-lysergic acid diethylamide and [3H]-spiroperidol. Mol Pharmacol 16: 687–699.PubMedGoogle Scholar
  41. Roisen FJ, Bartfeld H, Nagel R, York G (1981) Ganglioside stimulation of axonal sprouting in vitro. Science 214: 577–578.PubMedCrossRefGoogle Scholar
  42. Schneider GE (1981) Early lesions and abnormal neuronal connections. TINS 4: 187–192.Google Scholar
  43. Schwartz M, Spirman N (1982) Sprouting from chicken embryo dorsal root ganglia induced by nerve growth factor is specifically inhibited by affinity-purified antiganglioside antibodies. Proc Natl Acad Sci USA 79: 6080–6083.PubMedCrossRefGoogle Scholar
  44. Sparrow JR, McGuinnes C, Schwartz M, Grafstein B (1984) Antibodies to gangliosides inhibit goldfish optic nerve regeneration in vivo. J Neurosci Res 12: 233–243.PubMedCrossRefGoogle Scholar
  45. Spirman N, Sela BA, Schwartz M (1982) Antiganglioside antibodies inhibit neuritic outgrowth from regenerating goldfish retinal explants. J Neurochem 39: 874–877.PubMedCrossRefGoogle Scholar
  46. Spoerri PE (1983) Effects of gangliosides in the in vitro development of neuroblastoma cells: An ultrastructural study. Int J Dev Neurosci 1: 383–391.CrossRefGoogle Scholar
  47. Svennerholm L (1980) Gangliosides and synaptic transmission. In: Svennerholm L, Mandel P, Dreyfus H, Urban PF (eds): Structures and function of gangliosides. Plenum Press, New York, pp. 533–544.CrossRefGoogle Scholar
  48. Toffano G, Savoini G, Moroni F, Lombardi G, Calzà L, Agnati F (1983) GMl ganglioside stimulates the regeneration of dopaminergic neurons in the central nervous system. Brain Res 261: 163–166.PubMedCrossRefGoogle Scholar
  49. Toffano G, Savoini G, Aporti F, Calzolari S, Consolazione A, Maura G, Marchi M, Raiteri M, Agnati LF (1984) The functional recovery of damaged brain: the effect of GM1 monosialoganglioside. J Neurosci Res 12: 397–408.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • G. Vantini
    • 1
  • B. Figliomeni
    • 1
  • R. Zanoni
    • 1
  • A. Gorio
    • 2
  • G. Jonsson
    • 3
  • M. Fusco
    • 1
  1. 1.Fidia Neurobiological Research LaboratoriesAbano TermeItaly
  2. 2.Scuola di Farmacologia, Istituto di Farmacologia e FarmacognosiaUniversità di MilanoItaly
  3. 3.Department of HistologyKarolinska InstitutetStockholmSweden

Personalised recommendations