The Effect of GM1 on Cerebral Metabolism, Microcirculation and Histology in Focal Ischemia

  • Joel H. Greenberg
  • Martin Reivich
  • Rudolf Urbanics
  • Kortaro Tanaka
  • Eors Dora
  • Gino Toffano
Part of the FIDIA Research Series book series (FIDIA, volume 6)


GM1 is one of the major gangliosides in the mammalian brain, and when it is exogenously administered is known to penetrate the blood-brain-barrier (Orlando et al., 1979) and to be actively incorporated into the neuronal membrane (Toffano et al., 1980). In fact, the interaction of the gangliosides with brain membranes is reportedly accompanied by various metabolic effects including increased adenylate cyclase activity (Partington and Daly, 1979), increased phosphodiesterase activity (Davis and Daly, 1980), enhanced dopamine release (Cumar et al., 1978) and modification of (Na+, K +) ATPase activity (Leon et al., 1981).


Stroke Group Lingual Artery Local Cerebral Blood Flow Cranial Window Local Cerebral Glucose Utilization 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



local cerebral blood flow


electrocortical activity


middle cerebral artery


middle ectosylvian gyrus




local cerebral metabolic rat for glucose


cerebrocortical vascular volume


middle cerebral artery occlusion.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Astrup J (1982) Energy-requiring cell functions in the ischemic brain. J Neurosurg 56: 482–497.PubMedCrossRefGoogle Scholar
  2. Ceccarelli B, Aporti F, Finesso M (1976) Effect of brain gangliosides on functional recovery in experimental regeneration and reinnervation. Adv Exp Med Biol 12: 275–293.CrossRefGoogle Scholar
  3. Chance B, Williams RG (1955) Respiratory enzymes in oxidative phosphorylation. III. The steady state. J Biol Chem 217: 409–427.Google Scholar
  4. Cumar FA, Maggio B, Caputto R (1978) Dopamine release from nerve endings induced by polysialogangliosides. Biochem Biophys Res Commun 84: 65–69.PubMedCrossRefGoogle Scholar
  5. Davis CW, Daly JW (1980) Activation of rat cerebral cortical 3’,5’-cyclic nucleotide phosphodiesterase activity by gangliosides. Mol Pharmacol 17: 206–211.PubMedGoogle Scholar
  6. Dora E (1984) A simple cranial window technique for optical monitoring of cerebrocortical microcirculation and NAD/NADH redox state. Effect of mitochondrial electron transport inhibitors and anoxic anoxia. J Neurochem 42: 101–108.PubMedCrossRefGoogle Scholar
  7. Eke A, Hutiray GY, Kovach AGB (1979) Induced hemodilution detected by reflectometry for measuring miroregional blood flow and blood volume in cat brain cortex. Am J Physiol 236: H759 - H768.PubMedGoogle Scholar
  8. Farber JL, Chien KR, Mittnacht S Jr (1981) The pathogenesis of irreversible cell injury in ischemia. Am J Pathol 102: 271–281.PubMedGoogle Scholar
  9. Garcia JH (1984) Experimental ischemic stroke: A review. Stroke 15: 5–14.PubMedCrossRefGoogle Scholar
  10. Garcia JH, Kalimo H, Kamijyo Y, Trump BF (1977) Cellular events during partial cerebral ischemia. 1. Electron microscopy of feline cerebral cortex after middle-cerebral-artery occlusion. Virchows Arch B Cell Path 25: 191–206.Google Scholar
  11. Garcia JH, Lowry SL, Briggs L, Mitchem HL, Morawetz L, Halsey JH, Conger KA (1983) Brain capillaries expand and rupture in areas of ischemia and reperfusion. In: Reivich M, Hurtig HI (eds): Cerebrovascular Diseases, Raven Press, New York, pp. 169–179.Google Scholar
  12. Ginsberg MD, Reivich M, Frinak S, Harbig K (1976) Pyridine nucleotide redox state and blood flow of the cerebral artery occlusion in the cat. Stroke 7: 125–131.PubMedCrossRefGoogle Scholar
  13. Ginsberg MD, Graham DI, Welsh FA, Budd W (1979) Diffuse cerebral ischemia in the cat: III. Neuropathological sequelae of severe ischemia. Ann Neurol 5: 350–358.Google Scholar
  14. Harbig K, Chance B, Kovach AGB, Reivich M (1976) In vivo measurement of pyridine nucleotide fluorescence from the cat brain cortex. J Appl Physiol 41: 480–488.PubMedGoogle Scholar
  15. Ito V, Spate M, Walker JT Jr, Klatzo I (1975) Experimental cerebral ischemia in mongolian gerbils. I. Light microscopic observations. Acta Neuropath 32: 209–233.Google Scholar
  16. Kirino T, Sano K (1984) Fine structural nature of delayed neuronal death following ischemia in the gerbil hippocampus. Acta Neuropathol 62: 209–218.PubMedCrossRefGoogle Scholar
  17. Leon A, Tettamanti G, Toffano G (1981) Changes in functional properties of neuron membranes by insertion of exogenous ganglioside. In: Rapport MM, Gorio A (eds): Gangliosides in Neurological and Neuromuscular Function, Development, and Repair, Raven Press, New York, pp. 45–54.Google Scholar
  18. Meier P, Zierler KL (1954) On the theory of the indicator-dilution method for measurement of blood flow and blood volume. J Appl Physiol 6: 731–744.PubMedGoogle Scholar
  19. Mirzoyan SA, Mkheyan EE, Sekoyan ES, Sotskii OP (1971) Effect of gangliosides on the cerebral circulation. Dok Biol Sci 210: 762–764.Google Scholar
  20. Mirzoyan SA, Mkheyan EE, Sekoyan ES, Sotskii OP, Akopov SE (1979) Effect of gangliosides on Na +, K+-ATPase activity and conformation of microsomal membranes. Bull Exp Biol Med 86: 1607–1610.Google Scholar
  21. O’Brien MD, Waltz AG (1983) Transorbital approach for occluding the middle cerebral artery without craniectomy. Stroke 4: 201–206.CrossRefGoogle Scholar
  22. Orlando P, Cocciante G, Ippolito G, Mossari P, Roberti S, Tettamanti G (1979) The fate of tritium labeled GM1 ganglioside injected in mice. Pharmacol Res Commun 11: 759–773.PubMedCrossRefGoogle Scholar
  23. Partington CR, Daly JW (1979) Effect of gangliosides on adenylate cyclase activity in rat cerebral cortical membranes. Mol Pharmacol 15: 484–491.PubMedGoogle Scholar
  24. Schwartz JP, Mrsulja BB, Mrsulja BJ, Passonneau JV, Klatzo I (1976) Alterations of cyclic nucleotide-related enzymes and ATPase during unilateral ischemia and recirculation in gerbil cerebral cortex. J Neurochem 27: 101–107.CrossRefGoogle Scholar
  25. Siesjo PK (1981) Cell damage in the brain: A speculative synthesis. J Cereb Blood Flow Metabol 1: 155–185.CrossRefGoogle Scholar
  26. Sokoloff L, Reivich M, Kennedy C, et al. (1977) The (r4C) deoxyglucose method for the measurement of local cerebral glucose utilization: theory, procedure, and normal values in the conscious and anesthetized albino rat. J Neurochem 28: 897–916.PubMedCrossRefGoogle Scholar
  27. Toffano G, Benvegnu D, Bonetti AC, Facci L, Leon A, Orlando P, Ghidoni R, Tettamanti G (1980) Interactions of GM1 ganglioside with crude rat brain neuronal membranes. J Neurochem 35: 861–866.PubMedCrossRefGoogle Scholar
  28. Toffano G, Savoini G, Moroni F, Lombardi G, Galza L, Agnati LF (1983) GM1 ganglioside stimulates the regeneration of dopaminergic neurons in the central nervous system. Brain Res 261: 163–166.PubMedCrossRefGoogle Scholar
  29. Wojcik M, Ulas J, Oderfeld-Nowak B (1982) The stimulating effect of ganglioside injections on the recovery of choline acetyl transferase and acetylcholinesterase activities in the hippocampus of the rat after septal lesions. Neuroscience 7: 495–499.PubMedCrossRefGoogle Scholar
  30. Yatsu FM (1982) Acute medical therapy of strokes. Stroke 13: 524–526.PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • Joel H. Greenberg
    • 1
  • Martin Reivich
    • 1
  • Rudolf Urbanics
    • 1
  • Kortaro Tanaka
    • 1
  • Eors Dora
    • 1
  • Gino Toffano
    • 1
    • 2
  1. 1.Cerebrovascular Research Center, Department of NeurologyUniversity of PennsylvaniaPhiladelphiaUSA
  2. 2.Fidia Research LaboratoriesAbano Terme, PadovaItaly

Personalised recommendations