The Solution Conformation of Gangliosides Inferred from HSEA Calculations and High Field NMR Spectroscopy

Part of the FIDIA Research Series book series (FIDIA, volume 6)


Our understanding of the significance of carbohydrates in biological systems has increased during the last twenty years (Sharon, 1975; Sharon and Lis, 1981). Analytical techniques have improved tremendously during that period and Lindberg (1981) has reviewed how structural analysis of complex oligo- and polysaccharides can be carried out on milligram amounts of compound using modern spectroscopic and chemical tools. Through synthetic work, as demonstrated by Lemieux (1978), Paulsen (1982), Ogawa et al. (1984) and others, it is possible to prepare complex oligosaccharides in relatively large amounts. With these compounds it is possible to gain further insight into the understanding of the interaction between carbohydrates and proteins (such as enzymes, antibodies or lectins) (Lemieux, 1982; 1984). However, in order to obtain a better picture of these interactions it is necessary to have information about the preferred conformation of the oligosaccharides in solution. The present paper primarily discusses how a conformational analysis can be carried out using modern instrumentation and computers. Examples of the interpretation of the results in relation to the recognition of oligosaccharides will be discussed in the last part of the paper.


Conformational Analysis Pyranose Ring Prefer Conformation Monosaccharide Unit Minimum Energy Conformation 



nuclear magnetic resonance


hard sphere exo- anomeric effect


exo- anomeric effect




nuclear Overhauser effect


Perturbation Configuration Interaction using Localized Orbital.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allerhand A and Doddrell D (1971) J Am Chem Soc 93: 2777–2779.CrossRefGoogle Scholar
  2. Arnott S and Scott WE (1972) J Chem Soc Perkins, II: 324–335.CrossRefGoogle Scholar
  3. Berry JM, Hall LD, Wong KF (1977) Carbohydr Res 56: C16 - C20.CrossRefGoogle Scholar
  4. Berry JM, Hall LD, Welder DG, Wong KF (1979) Am Chem Soc Symposium Series 87: 30–49.CrossRefGoogle Scholar
  5. Bluhm TL, Deslandes Y, Marchessault RH, Perez S, Rinaudo M (1982) Carbohydr Res 100: 117–130.CrossRefGoogle Scholar
  6. Bock K and Lemieux RU (1979) Jap J Antibiotics 32: S163 - S177.Google Scholar
  7. Bock K, Bundle D, Josephson S (1982a) J Chem Soc Perkin II, 59–70.Google Scholar
  8. Bock K, Arnarp J, Lönngren J (1982b) Eur J Biochem 129: 171–178.PubMedCrossRefGoogle Scholar
  9. Bock K and Vignon M (1982) Nouveau Journal de Chimie 6: 301.Google Scholar
  10. Bock K (1983) Pure and Appl Chem 55: 605–622.CrossRefGoogle Scholar
  11. Bock K and Lemieux RU (1982) Carbohydr Res 100: 63–74.CrossRefGoogle Scholar
  12. Bock K and Thegersen H (1983) Annual Reports on NMR Spectroscopy 13: 1–57.CrossRefGoogle Scholar
  13. Bock K, Defaye J, Driguez H, Bar-Guilloux E (1983) Eur J Biochem 131: 595–600.PubMedCrossRefGoogle Scholar
  14. Bock K, Meldal M, Bundle DR, Iversen T, Garegg PJ, Norberg T, Lindberg AA, Svenson SB (1984) Carbohydr Res 130: 23–34.PubMedCrossRefGoogle Scholar
  15. Brisson J-R and Carver JP (1983) Can J Biochem Cell Biol 61: 1067–1078.PubMedCrossRefGoogle Scholar
  16. Czarniecki MF and Thornton ER (1977) J Am Chem Soc 99: 8279–82.CrossRefGoogle Scholar
  17. Evelyn L, Hall LD, Stevens JD (1982) Carbohydr Res 100: 55–62.CrossRefGoogle Scholar
  18. Gagnaire DY, Nardin R., Taravel FR, Vignon MR (1977) Nouveau Journal de Chimie 1: 423–430.Google Scholar
  19. Giacomini M, Pullman B, Maigret B (1970) Theoret Chim Acta 19: 347–364.CrossRefGoogle Scholar
  20. Hamer GK, Balza F, Cyr N, Perlin AS (1978) Can J Chem 56: 3109–3110.CrossRefGoogle Scholar
  21. Hayes ML, Serianni AS, Barker R (1982) Carbohydr Res 100: 87–101.CrossRefGoogle Scholar
  22. Hall LD, Wong KF, Hull WE, JD Stevens (1979) J Chem Commun 953–955.Google Scholar
  23. IUPAC-IUB Commission on Biochemical Nomenclature (1971) Arch Biochem Biophys 145: 405–621.CrossRefGoogle Scholar
  24. Jeener J, Meier BH, Bachmann P, Ernst RR (1979) J Chem Phys 71: 4546–4553.CrossRefGoogle Scholar
  25. Jeffrey GA, Pople JA, Binkley JS, Vishveshwara S (1978) J Am Chem Soc 100: 373–379.CrossRefGoogle Scholar
  26. Jeffrey GA and Taylor R (1980) J Comp Chem 1: 99–109. Jeffrey GA and Yates JH (1981) Car-bohydr Res 96: 205–213.Google Scholar
  27. Khare DP, Hindsgaul O, Lemieux RU (1985) Carbohydr Res 136: 285–308.CrossRefGoogle Scholar
  28. Kitaygorodsky AI (1961) Tetrahedron 14: 230–236.CrossRefGoogle Scholar
  29. Kitaygorodsky AI (1978) Chem Soc Rev 7: 133–162.CrossRefGoogle Scholar
  30. Koerner Jr, TAW, Prestegard JH, Demou PC, Yu RK (1983) Biochemistry, 22: 2676–2687.PubMedCrossRefGoogle Scholar
  31. Lemieux RU, Nagabhushan TL, Paul B (1972) Can J Chem 50: 773–776.CrossRefGoogle Scholar
  32. Lemieux RU (1978) Chem Soc Rev 7: 423–452.CrossRefGoogle Scholar
  33. Lemieux RU, Koto S, Voisin D (1979) Am Chem Soc Symposium Series 87: 17–29.CrossRefGoogle Scholar
  34. Lemieux RU, Bock K, Delbaere LT, Koto S, VS Rao (1980) Can J Chem 58: 631–653.CrossRefGoogle Scholar
  35. Lemieux RU (1982) in: Laidler KJ (ed): IUPAC Frontiers of Chemistry. Pergamon Press, New York, pp. 3–24.Google Scholar
  36. Lemieux RU and Bock K (1983) Archiv Biochem and Biophys 221: 125–134.CrossRefGoogle Scholar
  37. Lemieux RU (1984) VII International Symp. on Medicinal Chemistry, Aug 27–31, Uppsala, Sweden, Swedish Pharmaceutical Society.Google Scholar
  38. Lindberg B (1981) Chem Soc Rev 10: 409–434.CrossRefGoogle Scholar
  39. Marchessault RH, Bleha T, Deslandes Y, Revol J-F (1980) Can J Chem 58: 2415–2422.CrossRefGoogle Scholar
  40. Melberg S, Rasmussen K, Scordamaglia R, Tosi C (1979) Carbohydr Res 76: 23–37.CrossRefGoogle Scholar
  41. Melberg S and Rasmussen K, (1980) Carbohydr Res 78: 215–224.CrossRefGoogle Scholar
  42. Neszmelyi A, Tori K, Lukacz G (1977) J Chem Soc Chem Commun, 613–614.Google Scholar
  43. Noggle JH and Schirmer RE (1971) The Nuclear Overhauser Effect, Academic Press, New York, pp. 45.Google Scholar
  44. Ogawa T, Yamamoto H, Nukuda T, Kitajima T, Sugimoto M (1984) Pure and Appl Chem 56: 779–795.CrossRefGoogle Scholar
  45. Paulsen H (1982) Angew Chem Int Ed 21: 155–172.CrossRefGoogle Scholar
  46. Paulsen H, Peters T, Sinnwell V, Lebuhn R, Meyer B (1985) Liebigs Ann Chem 489–509.Google Scholar
  47. Rees DA (1981) Pure and Appl Chem 53: 1–14.CrossRefGoogle Scholar
  48. Sabesan S, Bock K, Lemieux RU (1984) Can J Chem 62: 1034–1045.CrossRefGoogle Scholar
  49. Sharon N (1975) Complex Carbohydrates: Their Chemistry, Biosynthesis and Function, Addison Westley, Reading Mass.Google Scholar
  50. Sharon N and Lis H (1981) Chem Eng News 13: 21–44.CrossRefGoogle Scholar
  51. Sheldrick B and Akrigg D (1980) Acta Cryst B36: 1615–21.CrossRefGoogle Scholar
  52. Thegersen H, Lemieux RU, Bock K, Meyer B (1982) Can J Chem 60: 44–57.CrossRefGoogle Scholar
  53. Tvaroska I and Kozâr T (1980) Am Chem Soc 102: 6929–36.CrossRefGoogle Scholar
  54. Veluraja K and Rao VSR (1983) Carbohydr Polymers 3: 175–192.CrossRefGoogle Scholar
  55. Wolfe S, Whangbo M-H, Mitchell DJ (1979) Carbohydr Res 69: 1–26.CrossRefGoogle Scholar
  56. Yadav JS and Luger P (1983) Carbohydr Res 119: 57–73.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • K. Bock
    • 1
  1. 1.Department of Organic ChemistryThe Technical University of DenmarkLyngbyDenmark

Personalised recommendations