The Role of Gangliosides in Neurotrophic Interaction in Vitro

  • F. J. Roisen
  • S. G. Matta
  • G. Yorke
  • M. M. Rapport
Part of the FIDIA Research Series book series (FIDIA, volume 6)


Gangliosides are membrane-associated acidic glycolipids that have been implicated in the regulation of cell processes such as differentiation (Moskol et al., 1974; Roisen et al., 1981a, b; Dimpfel et al., 1981; Leon et al., 1982), growth (Fishman et al., 1977; Langenback and Kennedy, 1978; Morgan and Seifert, 1979) and axonal regeneration (Obata et al., 1977; Caccia et al., 1979; Norido et al., 1982; Spirman et al., 1982). Their concentration in the brain is 14 times higher than in liver and nearly 60 times higher than in muscle (Seyfried et al., 1978; Leeden and Yu, 1982). Patterns of ganglioside synthesis have been reported to change during intense periods of neuritogenesis and synaptogenesis (Rösner, 1980; Sonnino et al., 1981). Their abundance, distribution and temporal occurrence in neuronal membranes suggest that gangliosides play a key role in the development of the nervous system.


Nerve Growth Factor Dorsal Root Ganglion Neurite Length Nerve Growth Factor Receptor Nerve Growth Factor Treatment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



bovine brain gangliosides


dorsal root ganglia


nerve growth factor


ornithine decarboxylase


standard medium


serum-free medium.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bio-Rad Protein Assay, BioRad Laboratories Technical Bulletin 1051, April 1977.Google Scholar
  2. Caccia MR, Meola G, Cerri C, Frattola L, Scarlato G, Aporti F (1979) Muscle and Nerve 2: 381–389.Google Scholar
  3. Chen KY, Heller J, Canellakis ES (1976) Biochem Biophys Res Commun 68: 401–408. Cohen S (1960) Proc Nat Acad Sci 46: 302–311.CrossRefGoogle Scholar
  4. Dimpfel W, Moller W, Mengs U (1981) in: Rapport MM and Gorio A (eds): Gangliosides in Neurological and Neuromuscular Function, Development, and Repair. Raven Press, New York, pp. 119–134.Google Scholar
  5. Ferrari G, Fabris M, Gorio A (1983) Dev Brain Res 8: 215–221.CrossRefGoogle Scholar
  6. Fishman PH, Moss J, Manganiello VC (1977) Biochem 16: 1871–1875.CrossRefGoogle Scholar
  7. Hefti F, Hartikka J, Frick W (1985) J Neurosci 5: 2086–2094.PubMedGoogle Scholar
  8. Langenback R and Kennedy S (1978) Exp Cell Res 112: 361–372.CrossRefGoogle Scholar
  9. Ledeen RW and Yu RK (1982) in: Ginsburg V (ed): Methods in Enzymology. Academic Press, New York, pp. 139–191.Google Scholar
  10. Leon A, Facci L, Benvegnu D, Toffano G (1982) Dev Neurosci 5: 108–114.PubMedCrossRefGoogle Scholar
  11. Masurovsky EB and Peterson ER (1973) Exp Cell Res 76: 447–448.PubMedCrossRefGoogle Scholar
  12. Matta SG, Yorke G, Roisen FJ (1986) Dev Brain Res 27: 243–252.CrossRefGoogle Scholar
  13. Morgan JI and Seifert W (1979) J Supramol Struct 10: 111–124.PubMedCrossRefGoogle Scholar
  14. Moskol JR, Gardner DA, Basu S (1974) Biochem Biophys Res Commun 61: 751–758. Norido F, Cannella R, Gorio A (1982) Muscle and Nerve 5: 107–110.Google Scholar
  15. Obata K, Momoko M, Handa S (1977) Nature 266: 369–371.PubMedCrossRefGoogle Scholar
  16. Roisen FJ, Murphy RA, Braden WG (1972) J Neurobiol 4: 347–368.CrossRefGoogle Scholar
  17. Roisen FJ, Bartfeld H, Nagele R, Yorke G (1981a) Science 214: 577–578.PubMedCrossRefGoogle Scholar
  18. Roisen FJ, Bartfeld H, Rapport MM (1981b) in: Rapport MM and Gorio A (eds): Gangliosides in Neurological and Neuromuscular Function, Development, and Repair. Raven Press, New York, pp. 135–150.Google Scholar
  19. Roisen FJ, Spero DA, Held SJ, Yorke G, Bartfeld H (1984) in: Ledeen RW, Yu RK, Rapport MM, Suzuki K (eds): Ganglioside Structure, Function, and Biomedical Potential. Plenum Press, New York, pp. 499–511.CrossRefGoogle Scholar
  20. Rösner H (1980) Wilhelm-Roux’s Arch 188: 205–213.CrossRefGoogle Scholar
  21. Schechter AL and Bothwell MA (1981) Cell 24: 807–874.CrossRefGoogle Scholar
  22. Schwartz M and Spirman N (1982) Proc Nat Acad Sci 79: 6080–6083.PubMedCrossRefGoogle Scholar
  23. Seyfried TN, Ando S, Yu RK (1978) J Lipid Res 19: 538–543.PubMedGoogle Scholar
  24. Shooter EM, Yanker BA, Landreth GE, Sutter S (1981) Rec Prog Horm Res 37: 417–446.PubMedGoogle Scholar
  25. Sonnino S, Ghidoni R, Masserini M, Aporti F, Tettamanti G (1981) J Neurochem 36: 227–232.PubMedCrossRefGoogle Scholar
  26. Spero DA and Roisen FJ (1984) Dev Brain Res 13: 37–48.CrossRefGoogle Scholar
  27. Spero DA and Roisen FJ (1986) Int J Dev Neurosci 3: 631–642.CrossRefGoogle Scholar
  28. Spero DA, Browning ET, Roisen FJ (1986) NY Acad Sci 715: 143–145.Google Scholar
  29. Spirman N, Sela BA, Schwartz M (1982) J Neurochem 39: 874–877.PubMedCrossRefGoogle Scholar
  30. Yanker BA and Shooter EM (1982) Ann Rev Biochem 51: 845–868.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 1986

Authors and Affiliations

  • F. J. Roisen
    • 1
  • S. G. Matta
    • 1
  • G. Yorke
    • 1
  • M. M. Rapport
    • 2
  1. 1.Dept. of Anatomy, University of Medicine and Dentistry of New JerseyRutgers Medical SchoolPiscatawayUSA
  2. 2.Div. of Neuroscience, New York State Psychiatric Institute, New York and Dept. of Biochemistry and Molecular Biophysics, College of Physicians and SurgeonsColumbia UniversityNew YorkUSA

Personalised recommendations