Skip to main content

Modulation of Neurite Outgrowth and Ganglioside Associated Changes in Cerebral Neurons and PC12 Pheochromocytoma Cells

  • Chapter
Book cover Gangliosides and Neuronal Plasticity

Part of the book series: FIDIA Research Series ((FIDIA,volume 6))

  • 87 Accesses

Abstract

The asymmetric position and molecular heterogeneity of gangliosides at the outer leaflet of the nerve plasma membrane has made this group of sialic acid containing glycosphingolipids a subject of expanding interest in neurobiology. Ever since the elucidation of the specific interaction between cholera toxin and GM1 (Moss and Vaughan, 1979; Bennet and Cuatrecasas, 1977) and the potential receptor function of gangliosides for thyrotropin hormone, a number of interactions between gangliosides and diverse ligands have been described (Kohn et al., 1981). Kohn and coworkers (1982) have suggested that gangliosides may serve as receptors for biologically active ligands to transduce signals across the bilayer. Basically, the model considers gangliosides as low affinity, high capacity binding sites which induce, upon interaction, conformational changes in the signal polypeptide. These changes evolve into additional short range hydrophobic interactions between the protein and the ganglioside which perturb the bilayer. An example for such perturbation is the generation of pores or channels in artificial bilayers which follows the interaction of cholera toxin (Tosteson and Tosteson, 1978) or tetanus toxin (Borochov-Neori et al., 1984) with the appropriate gangliosides.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bennett V, Cuatrecasas P (1977) Membrane gangliosides and activation of adenylate cyclase. In: Cuatrecasas P and Greaves MF (eds): The Specificity and Action of Animal, Bacterial and Plant Toxins, Chapman and Hall, London, p. 3 - 66.

    Google Scholar 

  • Borochov-Neori H, Yavin E, Montal M (1984) Tetanus toxin forms channels in planar lipid bilayers containing gangliosides. Biophys J 45: 83 - 85.

    Article  PubMed  CAS  Google Scholar 

  • Dawson G (1979) Complex carbohydrates of cultured neuronal and glial cell lines. In: Margolis R U and Margolis RK (eds): Complex carbohydrates of Nervous Tissue. Plenum Press, New York, pp. 291 - 325.

    Chapter  Google Scholar 

  • Dawson G, Stoolmiller A (1976) Comparison of the ganglioside composition of established mouse neuroblastoma cell strains grown in vivo and in tissue culture. J Neurochem 26: 225 - 226.

    Article  PubMed  CAS  Google Scholar 

  • Dreyfus H, Harth S, Massarelli R, Louis JC (1981) Mechanism of differentiation in cultured neurons: Involvement of gangliosides. In: Rapport MM and Gorio A (eds): Gangliosides in Neurological and Neuromuscular Function, Development and Repair, Raven Press, New York, pp. 151 - 170.

    Google Scholar 

  • Dreyfus H, Louis JC, Harth S, Mandel P (1980) Gangliosides in cultured neurons. Neurosci 5: 1647 - 1655.

    Article  CAS  Google Scholar 

  • Duksin D, Mahoney WC (1982) Relationship of the structure and biological activity of the natural homologues of tunicamycin. J Biol Chem 257: 3105 - 3109.

    PubMed  CAS  Google Scholar 

  • Greene LA, Shooter EM (1980) The nerve growth factor: Biochemistry, synthesis and mechanism of action. Annu Rev Neurosci 3: 353-402.

    Google Scholar 

  • Greene LA, Tischler AS (1976) Establishment of a noradrenergic clonal line of rat adrenal pheochromocytoma cells which respond to nerve growth factor. Proc Natl Acad Sci USA 73: 2424 - 2428.

    Article  PubMed  CAS  Google Scholar 

  • Guarnaccia SP, Shaper JH, Schnaar RL (1983) Tunicamycin inhibits ganglioside biosynthesis in neuronal cells. Proc Natl Acad Sci USA 80: 1551-1555._

    Google Scholar 

  • Haber B, Gorio A (eds) (1984) Neurobiology of gangliosides J Neurosci Res 12: 147 - 509.

    Google Scholar 

  • Hilbig R, Lauke G, Rahmann H (1983) Brain gangliosides during the lifespan (embryogenesis to scenescence) of the rat. Dev Neurosci 6: 260 - 270.

    Article  PubMed  Google Scholar 

  • Holmgren J, Elwing H, Fredman P, Svennerholm L (1980) Polystyrene absorbed ganglioside for investigation of the structure of the tetanus toxin receptor. Eur J Biochem 106: 371 - 379.

    Article  PubMed  CAS  Google Scholar 

  • Kohn LD. Aloj SM, Beguinot F, Vitti P, Yavin E, Yavin Z, Laccetti P, Grollman EF, Valente WA (1982) Molecular interactions at the cell surface: Role of glycoconjugates and membrane lipids in receptor recognition processes. In: Shepard J, Anderson VE, Eaton J (eds): Membranes and Genetic Diseases, Alan R Liss Inc, NY, pp. 55 - 83.

    Google Scholar 

  • Kohn LD, Consiglio E, Aloj SM, Beguinot F, De Wolf MJS, Yavin E, Yavin Z, Meldolesi MF, Shifrin S, Gill DI, Vitti P, Lee G, Valente WA, Grollman EF (1981) The structure of the thyrotropin (TSH) receptor: potential role of gangliosides and relationship to receptors for interferon and bacterial toxins. In: Schweiger HG (ed): Springer-Verlag, Berlin, p. 696 - 706.

    Google Scholar 

  • Lazarovici P, Yavin E (1985) Tetanus toxin interaction with human erythrocytes I. Properties of polysialoganglioside association with the cell surface. Biochim Biophys Acta 812: 523-531.

    Google Scholar 

  • Ledeen RW (1983) Gangliosides. In: Lajtha A (ed): Handbook of Neurochemistry, Vol. 3, Plenum Press, New York, pp. 41 - 90.

    Google Scholar 

  • Lund RD (1978) Development and Plasticity of the Brain, Oxford University Press, New York, pp. 1 - 370.

    Google Scholar 

  • Maccioni HF, Landa CA, Arce A, Capputto R (1977) The biosynthesis of brain gangliosides. Evidence for a transient pool and an end product pool of gangliosides. Adv Exp Med Biol 83: 267-281.

    Google Scholar 

  • Margolis RK, Salton SRJ, Margolis RV (1983) Complex carbohydrates of cultured PC12 pheochromocytoma cells. Effects of nerve growth factor and comparison with neonatal and mature rat brain. J Biol Chem 258: 4110-4117.

    Google Scholar 

  • Margolis RU, Mazzulla M, Greene LA, Margolis RK (1984) Fucosyl gangliosides of PC12 pheochromocytoma cells. FEBS Lett 172: 339 - 342.

    Article  PubMed  CAS  Google Scholar 

  • Mellanby J, Green J (1981) How does tetanus toxin act? Neurosci 6: 281 - 300.

    Article  CAS  Google Scholar 

  • Mirsky R, Wendon LMB, Black P, Stolkin C, Bray D (1978) Tetanus toxin: a cell surface marker for neurons in culture. Brain Res 148: 251 - 259.

    Article  PubMed  CAS  Google Scholar 

  • Moss J, Vaughan M (1979) Activation of adenylate cyclase by choleragen. Annu Rev Biochem 48: 581 - 600.

    Article  PubMed  CAS  Google Scholar 

  • Nirenberg M, Wilson S, Higashida H, Thompson J, Eisenbarth G, Walsh F, Rotter A, Kenimer J, Sabol S (1980) Synapse plasticity. Pont Acad Sci Scri Varia 45: 123 - 127.

    Google Scholar 

  • Olden K, Pratt RM, Yamada KM (1978) Role of carbohydrates in protein secretion and turnover: Effect of tunicamycin on the major cell surface glycoprotein of chick embryo fibroblasts. Cell 13: 461-473.

    Google Scholar 

  • Richter-Landsberg C, Duksin D (1983) Role of glycoproteins in neuronal differentiation. Exptl Cell Res 149: 335 - 345.

    Article  PubMed  CAS  Google Scholar 

  • Rösner H (1980) Ganglioside changes in the chicken optic lobes and cerebrum during embryonic development: Transient occurrence of novel multisialogangliosides. Wilhelm Rouxs Arch Dev Biol 188: 205 - 213.

    Article  Google Scholar 

  • Rösner H (1982) Ganglioside changes in the chicken optic lobes as biochemical indicators of brain development and maturation. Brain Res 236: 46 - 61.

    Google Scholar 

  • Rybak S, Ginzburg I, Yavin E (1983) Gangliosides stimulate neurite outgrowth and induce tubulin mRNA accumulation in neural cells. Biochim Biophys Res Commun 116: 974 - 980.

    Article  CAS  Google Scholar 

  • Seifert W (1981) Gangliosides in nerve cell cultures. In: Rapport MM, Gorio A (eds): Gangliosides in Neurological and Neuromuscular Function, Development and Repair, Raven Press, New York, pp. 99 - 117.

    Google Scholar 

  • Seyfreid TN, Miyazawa N~Yu RK (1983) Cellular localization of gangliosides in the developing mouse cerebellum: Analysis using the Weaver mutant. J Neurochem 41: 491-505.

    Google Scholar 

  • Sonnino S, Ghidoni R, Masserini M, Aporti F, Tettamanti G (1981) Changes in rabbit brain cytosolic and membrane bound gangliosides during prenatal life. J Neurochem 36: 227 - 232.

    Article  PubMed  CAS  Google Scholar 

  • Tettamanti G, Bonali F, Marchesini S, Zambotti V (1973) A new procedure for the extraction, purification and fractionation of brain gangliosides. Biochim Biophys Acta 296: 160 - 170.

    Article  PubMed  CAS  Google Scholar 

  • Tosteson MT, Tosteson DC (1978) Bilayers containing gangliosides develop channels when exposed to cholera toxin. Nature 275: 142 - 144.

    Article  PubMed  CAS  Google Scholar 

  • Van Heyningen WE (1974) Gangliosides as membrane receptors for tetanus toxin, cholera toxin and serotonin. Nature 249: 415 - 417.

    Article  Google Scholar 

  • Wellhoner HH (1982) Tetanus neurotoxin. Rev. Physiol Biochem Pharmacol 93: 1-68. Willinger M (1981) The expression of GM1 ganglioside during neuronal differentiation. In: Rapport MM, Gorio A (eds): Gangliosides in Neurological and Neuromuscular Function, Development and Repair, Raven Press, New York, pp. 17 - 27.

    Google Scholar 

  • Yamada KM, Olden K (1982) In: Famura G (ed): Biology of tunicamycin, Japan Scientific Societies Press, Tokyo, pp. 119 - 144.

    Google Scholar 

  • Yavin E, Richter-Landsberg C, Duksin D, Yavin Z (1984) Tunicamycin blocks neuritogenesis and glucosamine labeling of gangliosides in developing cerebral neuron cultures. Proc Natl Acad Sci USA 81: 5638 - 5642.

    Article  PubMed  CAS  Google Scholar 

  • Yavin E, Yavin Z (1979) Ganglioside profiles during neural tissue development: acquisition in the prenatal rat brain and cerebral cell cultures. Dev Neurosci 2: 25 - 37.

    Article  CAS  Google Scholar 

  • Yavin E, Yavin Z, Kohn LD (1983) Temperature mediated interaction of tetanus toxin with cerebral neuron cultures: characterization of a neuraminidase-insensitive toxin receptor complex. J Neurochem 40: 1212 - 1219.

    Article  PubMed  CAS  Google Scholar 

  • Yavin E, Habig WH (1984) Ganglioside-mediated tetanus toxin interaction with neural hybrid clones: Binding to synaptic competent and incompetent cells. J Neurochem 42: 1313-1320.

    Google Scholar 

  • Yavin Z, Yavin E (1980) Survival and maturation of cerebral neurons on poly-L-lysine surfaces in the absence of serum. Dev Biol 75: 454 - 459.

    Article  PubMed  CAS  Google Scholar 

  • Yogeeswaran G, Murray RK, Pearson ML, Sanwal BD, McMorris FA, Ruddle FH (1973) Glycophingolipids of clonal lines of mouse neuroblastoma and neuroblastoma XL cell hybrids. J Biol Chem 248: 1231 - 1239.

    PubMed  CAS  Google Scholar 

  • Yusuf HKM, Pohlentz G, Sandhoff K (1983) Tunicamycin inhibits ganglioside biosynthesis in rat liver Golgi apparatus by blocking sugar nucleotide transport across the membrane vesicles. Proc Natl Acad Sci USA 80: 7075 - 7079.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Yavin, E. (1986). Modulation of Neurite Outgrowth and Ganglioside Associated Changes in Cerebral Neurons and PC12 Pheochromocytoma Cells. In: Tettamanti, G., Ledeen, R.W., Sandhoff, K., Nagai, Y., Toffano, G. (eds) Gangliosides and Neuronal Plasticity. FIDIA Research Series, vol 6. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-5309-7_21

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-5309-7_21

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4757-5311-0

  • Online ISBN: 978-1-4757-5309-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics