Skip to main content

Angular Kinetics

  • Chapter
Fundamentals of Biomechanics
  • 1151 Accesses

Abstract

Angular kinetics explains the causes of rotary motion and employs many variables similar to the ones discussed in the previous chapter on linear kinetics. In fact, Newton’s laws have angular analogues that explain how torques create rotation. The net torque acting on an object creates an angular acceleration inversely proportional to the angular inertia called the moment of inertia. Angular kinetics is quite useful because it explains the causes of joint rotations and provides a quantitative way to determine the center of gravity of the human body. The application of angular kinetics is illustrated with the principles of Inertia and Balance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Brown, L. E. (Ed.) (2000). Isokinetics in human performance. Champaign, IL: Human Kinetics.

    Google Scholar 

  • Chaffin, B. D., Andersson, G. B. J., & Martin, B. J. (1999). Occupational biomechanics (3rd ed.). New York: Wiley.

    Google Scholar 

  • Huxham, F. E., Goldie, P. A., & Patla, A. E. (2001). Theoretical considerations in balance assessment. Australian Journal of Physiotherapy, 47, 89–100.

    PubMed  CAS  Google Scholar 

  • Mann, R. V.. (1981). A kinetic analysis of sprinting. Medicine and Science in Sports and Exercise, 13, 325–328.

    Article  PubMed  CAS  Google Scholar 

  • McGill, S. M., & Norman, R. W. (1985). Dynamically and statically determined low back moments during lifting. Journal of Biomechanics,18, 877–886.

    Article  PubMed  CAS  Google Scholar 

  • Murray, M. P., Seireg, A., & Scholz, R. C. (1967). Center of gravity, center of pressure, and supportive forces during human activities. Journal of Applied Physiology, 23, 831–838.

    PubMed  CAS  Google Scholar 

  • Winter, D. A. (1984). Kinematic and kinetic patterns of human gait: Variability and compensating effects. Human Movement Science, 3, 51–76.

    Article  Google Scholar 

  • Winter, D. A. (1995). Human balance and postre control during standing and walking. Gait and Posture, 3, 193–214.

    Article  Google Scholar 

  • Winters, J. M., & Woo, S. L.-Y. (Eds.) (1990). Multiple muscle systems. New York: Springer.

    Google Scholar 

  • Zatsiorsky, V. M. (2002). Kinetics of human motion. Champaign, IL: Human Kinetics.

    Google Scholar 

  • Zernicke, R. F., & Roberts, E. M. (1976). Human lower extremity kinetic relationships during systematic variations in resultant limb velocity. In P. V. Komi (Ed.), Biomechanics V-B (pp. 41–50). Baltimore: University Park Press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer Science+Business Media New York

About this chapter

Cite this chapter

Knudson, D. (2003). Angular Kinetics. In: Fundamentals of Biomechanics. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-5298-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-5298-4_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-5300-4

  • Online ISBN: 978-1-4757-5298-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics