Skip to main content

D.C. Programming Approach to the Multidimensional Scaling Problem

  • Chapter
From Local to Global Optimization

Part of the book series: Nonconvex Optimization and Its Applications ((NOIA,volume 53))

Abstract

The paper is devoted to the solution of the metric Euclidean Multidimensional Scaling Problem (MDS) and the Euclidean distance geometry problem by methods of d.c. programming developed earlier by the authors. The algorithms, called DCA (DC Algorithms), are based on the duality theory and local optimality conditions for d.c. programming. Different regularization techniques are used in order to improve the qualities (robustness, stability, convergence rate and globality of computed solutions) of DCA. Lagrangian duality without gap allows us to find interesting equivalent forms of (MDS) and a very simple expression of the dual objective function which can be used for checking globality of solutions computed by DCA. DCA (with and without regularization techniques) is described for solving both MDS problems. Requiring only matrix-vector products and only one Cholesky factorization, it is quite simple, and allows exploiting sparsity in large-scale problems. Moreover the well-known majorization method by de Leeuw can be viewed as a special case of DCA. DCA (which globally solves the trust region problem) is also presented in its parametric version to deal with the Euclidean metric MDS problem. Finally extensive numerical experiments are reported which show the robustness and efficiency of DCA for solving the Euclidean metric MDS problem, especially in the largescale setting. They also show the globality of computed solutions in the case where the dissimilarities are the Euclidean distances between the objects.

This work was partially supported by the computer resources financed by Contrat de Plan Interregional du Bassin Parisien-Pole Interregional de Modelisation en Sciences pour Ingenieurs

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. ABDO Y. ALFAKIH, A. KHANDANI & H. WOLKOWICZ, An interior-point method for the Euclidean distance matrix completion problem,Research Report CORR 97–9, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada.

    Google Scholar 

  2. LE THI HOAI AN, Contribution d l’optimisation non convexe et l’optimisation globale. Théorie, Algorithms et Applications, Habilitation à Diriger des Recherches, Université de Rouen, Juin 1997.

    Google Scholar 

  3. LE THI HOAI AN, PHAM DINH TAO and L.D. MUU (1996), Numerical solution for Optimization over the efficient set by D.c. Optimization Algorithm, Operations Research Letters, 19, pp. 117–128.

    Google Scholar 

  4. LE THI HOAI AN and PHAM DINH TAO (1997), Solving a class of linearly constrained indefinite quadratic problems by D.c. algorithms, Journal of Global Optimization, 11 pp. 253–285.

    Article  MATH  Google Scholar 

  5. AUSLENDER, Optimisation, méthodes numériques, Ed. Masson. Paris, 1976.

    Google Scholar 

  6. R. BEALS, D.H. KRANTZ & A. TVERSKY, Foundation of multidimensional scaling, Psychol. Rev. Vol 75, pp. 12–142, 1968.

    Google Scholar 

  7. W. BICK, H. BAUER, P.J. MUELLER & O. GIESEKE, Multidimensional scaling and clustering techniques (theory and applications in the social science), Institut fur angewandte sozialforchung, Universitat zu koln, 1977.

    Google Scholar 

  8. H. BREZIS, Opérateurs maximaux monotones, Mathematics Studies 5, North Holland, 1973.

    Google Scholar 

  9. G.M. CRIPPEN, A novel approach to calculation of conformation: distance geometry, J. Computational physics, Vol 24 (1977), pp. 96–107.

    Article  MathSciNet  MATH  Google Scholar 

  10. G.M. CRIPPEN, Rapid calculation of coordinates from distance measures, J. Computational physics, Vol 26 (1978), pp. 449–452.

    Google Scholar 

  11. G.M. CRIPPEN & T.F. HAVEL, Distance Geometry and Molecular Conformation, Research Studies Press, Taunton, Somerset, UK, 1988.

    MATH  Google Scholar 

  12. J. DE LEEUW, Applications of convex analysis to multidimensional scaling, Recent developments in statistics, J.R. Barra et al., editors, North-Holland Publishing Company, pp. 133–145, 1977.

    Google Scholar 

  13. J. DE LEEUW, Convergence of the majorization method for multidimensional scaling, Journal of classification, Vol 5 (1988), pp. 163–180.

    Google Scholar 

  14. R.O. DUDA and P.E. HART, Pattern Classification and Scene Analysis, Wiley, New York, 1973.

    MATH  Google Scholar 

  15. W. GLUNT, T.L. HAYDEN, & M. RAYDAN, Molecular conformation from distance matrices, J. Comp. Chem., 14 (1993), pp. 114–120.

    Article  Google Scholar 

  16. L. GUTTMAN, A general nonmetric technique for finding the smallest coordinate space for a configuration of points, Psychometrika, Vol 33 (1968), pp. 469–506.

    Google Scholar 

  17. T.F. HAVEL, An evaluation of computational strategies for use in the determination of protein structure from distance geometry constraints obtained by nuclear magnetic resonance, Prog. Biophys. Mol. Biol., 56 (1991), pp. 43–78.

    Google Scholar 

  18. B. A. HENDRICKSON, The Molecule Problem: Determining Conformation from Pairwise Distances, Ph.D. Thesis, Cornell University, Ithaca, New York, 1991.

    Google Scholar 

  19. B. A. HENDRICKSON, The Molecule Problem: Exploiting structure in global optimization, SIAM J. Optim., 5 (1995), pp. 835–857.

    MathSciNet  MATH  Google Scholar 

  20. J.B. HIRIART-URRUTY, From convex optimization to non convex optimization. Part I: Necessary and sufficent conditions for global optimality, Nonsmooth Optimization and Related Topics, Ettore Majorana International Sciences, Series 43, Plenum Press, 1988.

    Google Scholar 

  21. R. HORST & H. TUY, Global Optimization (Deterministic Approaches), second edition, Springer-Verlag, Berlin New York, 1993.

    Google Scholar 

  22. H. KONNO, Maximization of a convex quadratic function under linear constraints, Mathematical Programming, 11 (1976), pp. 117–127.

    Google Scholar 

  23. H. KONNO, P.T. THACH and H. TUY, Optimization on Low Rank Nonconvex Structures, Kluwer, Dordrecht-Boston-London, 1997.

    MATH  Google Scholar 

  24. J.B. KRUSKAL, Multidimensional scaling by optimizing goodnessof-fit to a non metric hypothesis, Psychometrika, Vol 29, pp. 1–28, 1964.

    Google Scholar 

  25. J.B. KRUSKAL, Nonmetric multidimensional scaling: a numerical method, Psychometrika, Vol 29 (1964), pp. 115–229.

    Google Scholar 

  26. J.B. KRUSKAL & M. WISH, Multidimensional Scaling, Newbury Park, CA. Sage, 1978.

    Google Scholar 

  27. P.J. LAURENT, Approximation et Optimisation, Hermann, Paris, 1972.

    MATH  Google Scholar 

  28. M. LAURENT, Cuts, matrix completions and a graph rigidity, Mathematical Programming, Vol. 79 (1997), Nos 1–3, pp. 255–283.

    MathSciNet  Google Scholar 

  29. W.J.M. LEVET, J.P. VAN DE GEER & R. PLOMPI, Tridiac comparaisons of musical intervals, Bristish. J. Math. Statist. Psychol. Vol 19 (1966), pp. 163–179.

    Article  Google Scholar 

  30. J.C. LINGOES & E.E. ROSKAM, A mathematical and emprical analysis of two multidimensional scaling algorithms, Psychometrika, Vol 38 (1973), monograph supplement.

    Google Scholar 

  31. P.L. LIONS & B. MERCIER, Splitting algorithms for the sum of two nonlinear operators, SIAM J. Numer. Anal. 16,6 (1979), pp. 964–979.

    Google Scholar 

  32. P. MAHEY and PHAM DINH TAO, Partial regularization of the sum of two maximal monotone operators, Math. Modell. Numer. Anal. (M2AN), Vol. 27 (1993), pp. 375–395.

    MathSciNet  MATH  Google Scholar 

  33. P. MAHEY and PHAM DINH TAO, Proximal decomposition of the graph of maximal monotone operator, SIAM J. Optim. 5 (1995), pp. 454–468.

    Google Scholar 

  34. B. MIRKIN, Mathematical Classification and Clustering,in Book Series “Nonconvex Optimization arid its Applications”, P.M. Pardalos and R. Horst eds., Kluwer Academic Publishers.

    Google Scholar 

  35. J.J. MORE & ZHIJUN WU, Global continuation for distance geometry problems, SIAM J. Optim., Vol 7, No 3 (1997), pp. 814–836.

    MathSciNet  MATH  Google Scholar 

  36. J.J. MORE & Z. WU, Issues in large-scale global molecular optimization, preprint MCS-P539–1095, Argonne National Laboratory, Argonne, Illinois 60439.

    Google Scholar 

  37. G.L. NEMHAUSER & L.A. WOLSEY, Integer and Combinatorial Optimization, John Wiley & Sons, 1988.

    Google Scholar 

  38. A.M. OSTROWSKI, Solutions of equations and systems of equations, Academic Press, New York, 1966.

    Google Scholar 

  39. P.M. PARDALOS & J.B. ROSEN, Constrained Global Optimization: Algorithms and applications, Lecture Notes in Computer Science, 268, Springer-Verlag, Berlin, 1987.

    Google Scholar 

  40. PHAM DINH TAO, Eléments homoduaux d’une matrice A relatif à un couple des normes (0,11)). Applications au calcul de SS,f,(A), Séminaire d’analyse numérique, Grenoble, n°236, 1975.

    Google Scholar 

  41. PHAM DINH TAO, Calcul du maximum d’une forme quadratique définie positive sur la boule unité de oc. Séminaire d’analyse numérique, Grenoble, n°247, 1976.

    Google Scholar 

  42. PHAM DINH TAO, Contribution à la théorie de normes et ses applications à l’analyse numérique, Thèse de Doctorat d’Etat Es Science, Université Joseph Fourier- Grenoble, 1981.

    Google Scholar 

  43. PHAM DINH TAO, Convergence of subgradient method for computing the bound norm of matrices, Linear Alg. and Its Appl, Vol 62 (1984), pp. 163–182.

    Article  MATH  Google Scholar 

  44. PHAM DINH TAO, Algorithmes de calcul d’une forme quadratique sur la boule unité de la norme maximum, Numer. Math., Vol 45 (1984), pp. 377–401.

    Google Scholar 

  45. PHAM DINH TAO, Algorithms for solving a class of non convex optimization problems. Methods of subgradients, Fermat days 85. Mathematics for Optimization, Elsevier Science Publishers B.V. North-Holland, 1986.

    Google Scholar 

  46. PHAM DINH TAO, Iterative behaviour, Fixed point of a class of monotone operators. Application to non symmetric threshold function, Discrete Mathematics 70 (1988),pp. 85–105.

    Google Scholar 

  47. PHAM DINH TAO, Duality in d.c. (difference of convex functions) optimization. Subgradient methods, Trends in Mathematical Optimization, International Series of Numer Math. Vol 84 (1988), Birkhauser, pp. 277–293.

    Google Scholar 

  48. PHAM DINH TAO et LE THI HOAI AN, Stabilité de la dualité lagrangienne en optimisation d.c. (différence de deux fonctions convexes), C.R. Acad. Paris, t.318, Série I (1994), pp. 379–384.

    Google Scholar 

  49. PHAM DINH TAO and LE THI HOAI AN, Lagrangian stability and global optimality on nonconvex quadratic minimization over Euclidean balls and spheres, Journal of Convex Analysis, 2(1995), pp. 263–276.

    Google Scholar 

  50. PHAM DINH TAO and LE THI HOAI AN (1997), Convex analysis approach to d.c. programming: Theory, Algorithm and Applications (dedicated to Professor Hoang ’Thy on the occasion of his 70th birthday), Acta Mathematica Vietnamica, Vol. 22, N°1, 1997, pp 289–355.

    MathSciNet  Google Scholar 

  51. PHAM DINH TAO and LE THI HOAI AN (1998), D.c. optimization algorithms for trust region problem. SIAM J. Optimization, vol 8, No 2, pp. 476–505.

    Google Scholar 

  52. B. POLYAK, Introduction to Optimization. Optimization Software, Inc., Publication Division, New York, 1987.

    Google Scholar 

  53. R.T ROCKAFELLAR, Convex Analysis, Princeton University, Princeton, 1970.

    MATH  Google Scholar 

  54. B.D. RIPLEY, Pattern Recognition and Neural Networks, Cambridge University Press, 1996.

    Google Scholar 

  55. R.T ROCKAFELLAR, Monotone operators and the proximal point algorithm,SIAM J. Control and Optimization, Vol.14, N°5 (1976).

    Google Scholar 

  56. J. B. SAXE, Embeddability of Weighted Graphs in k-space is Strongly NP-hard, Proc. 17 Allerton Conference in Communications, Control and Computing, 1979, pp. 480–489.

    Google Scholar 

  57. R.N SHEPARD, Representation of structure in similarity data; problem and prospects, Psychometrika, Vol 39 (1974), pp. 373–421.

    Google Scholar 

  58. J.E. SPINGARN, Partial inverse of a monotone operator, Appl. Math. Optim. 10 (1983), pp. 247–265.

    Google Scholar 

  59. Y. TAKANE, F.W. YOUNG & J. DE LEEUW Nonmetric individual differences multidimensional scaling: an alternating least squares method with optimal scaling features, Psychometrika, Vol 42 (1977), pp. 7–67.

    Article  MATH  Google Scholar 

  60. J.F. TOLAND, On subdifferential calculus and duality in nonconvex optimization, Bull. Soc. Math. France, Mémoire 60 (1979), pp. 177–183.

    Google Scholar 

  61. H. TUY, A general deterministic approach to global optimization via d. c. programming, Fermat Days 1985: Mathematics for Optimization, North-Holland, Amsterdam, (1986), pp. 137–162.

    Google Scholar 

  62. H. TUY, Introduction to Global Optimization, Les Cahiers du GERAD, Groupe d’Etudes et de Recherche en Analyse des Décision, Montréal, Québec, 1994.

    Google Scholar 

  63. H. TUY, Convex Analysis and Global Optimization, Kluwer 1998.

    Google Scholar 

  64. R. VARGA Matrix iterative analysis, Prentice Hall, 1962.

    Google Scholar 

  65. A.R. WEBB, Multidimensional scaling by iterative majorization using radial basis functions, Pattern Recognition, 28 (5) (1995), pp. 753–759.

    Article  Google Scholar 

  66. Z. ZOU, RICIIARD.H. BIRD, & ROBERT B. SCHNABEL, A Stochastic/Pertubation Global Optimization Algorithm for Distance Geometry Problems, J. of Global Optimization, 11 (1997), pp. 91–105.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2001 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

An, L.T.H., Tao, P.D. (2001). D.C. Programming Approach to the Multidimensional Scaling Problem. In: Migdalas, A., Pardalos, P.M., Värbrand, P. (eds) From Local to Global Optimization. Nonconvex Optimization and Its Applications, vol 53. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-5284-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-5284-7_11

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-4852-6

  • Online ISBN: 978-1-4757-5284-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics