Advertisement

Reinforced Earth

  • F. Schlosser
  • M. Bastick
Chapter

Abstract

Reinforced Earth was invented in 1963, by the French architect-engineer Henri Vidal. It is a construction material made of a frictional backfill material reinforced by linear flexible strips generally placed horizontally (Fig. 21.1). Since its invention, Reinforced Earth has found a wide use in many different areas of civil engineering, notably in retaining walls, seawalls, dams, bridge abutments, and foundation slabs. This technique has been adopted worldwide and the total number of Reinforced Earth structures built each year has been continuously increasing as indicated in Figure 21.2.

Keywords

Triaxial Test Internal Friction Angle Stone Column Overburden Pressure Galvanize Steel 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bassett, R. H. and Last, H. C. (1978), Reinforced earth below footings and embankments, Symposium on Earth Reinforcement, ASCE, Pittsburgh, pp. 202-231.Google Scholar
  2. Gourmelon, J. P., Preynat, J. P., and Raharinaivo, A. (1975), Durabilité des ouvrages, Dimensionnement des Ouvrages en Terre Armée Murs et Culées de Ponts, Collection organized by the Association Amicale des Ingénieurs Anciens Elèves de l’Ecole Nationale des Ponts et Chaussées, pp. 97-105.Google Scholar
  3. Guilloux, A. and Jailloux, J. M. (1979), Essai de rupture en vraie grandeur d’un mur en terre armée par corrosion accélérée, International Conference on Soil Reinforcement: Reinforced Earth and Other Techniques, ENPC-LCPC, Paris, 2, pp. 503-508.Google Scholar
  4. Guilloux, A., Schlosser, F., and Long, N. T. (1979), Etude du frottement sable-armature en laboratoire, International Conference on Soil Reinforcement: Reinforced Earth and Other Techniques, ENPC-LCPC, Paris, 1, pp. 35-40.Google Scholar
  5. Haussmann, M. R. (1976), Strength of reinforced soil, Australian Road Research Board, Session 13, 8, pp. 1–8.Google Scholar
  6. Haviland, J. E., Bellair, P. J., and Morrel, V. (1968), Durability of corrugated metal, Highway Research Record No. 242, Washington D.C.Google Scholar
  7. John, N. W. M, Ritson, R., Johnson, P. B., and Petley, D. J. (1983), Instrumentation of reinforced soil walls, Proceedings, 8th ECSMFE, Helsinki, 2, pp. 509–512.Google Scholar
  8. Laréal, P. and Bacot, J. (1973), Etude sur modèles réduits bi-dimensionnels de la rupture de massifs en terre armée, Travaux, No. 463.Google Scholar
  9. Madani, C. (1979), Etude du mécanisme interne et du comportement dynamique de la terre armée à l’appareil triaxial, Doctorate Thesis, Ecole Nationale des Ponts et Chaussées, Paris.Google Scholar
  10. McKittrick, D. P. (1979), Reinforced earth: application of theory and research to practice, Ground Engineering, 12, No. 1, pp. 19–31.Google Scholar
  11. Mitchell, J. K. and Schlosser, F. (1979), Mechanism, behavior and design methods for earth reinforcement, General Report, International Conference on Soil Reinforcement: Reinforced Earth and Other Techniques, ENPC-LCPC, Paris, 3, pp. 23-74.Google Scholar
  12. Plumelle, C. (1984), Improvement of the bearing capacity of soil by inserts of group and reticulated micropiles, International Conference on In-situ Soil and Rock Improvement, Paris, pp. 83-89.Google Scholar
  13. Romanoff, M. (1957), Underground Corrosion, Circular No. 579, N.B.S., Washington, D.C.Google Scholar
  14. Romstad, K. M., Al-Yassin, Z., Herrman, L. R., and Shen, C. K. (1978), Stability analysis of Reinforced Earth retaining structures, Symposium on Earth Reinforcement, ASCE, Pittsburgh, pp. 685–713.Google Scholar
  15. Schlosser, F., Long, N. T., Guegan, Y., and Legeay, G. (1972), Etude de la Terre Armée à l’appareil triaxial, Rapport de recherche, No. 17, LCPC, Paris.Google Scholar
  16. Schlosser, F. and Long, N. T. (1975), Choix de matériau de remblai, Dimensionnement des Ouvrages en Terre Armée Murs et Culées de Ponts, Collection organized by the Association Amicale des Ingénieurs Anciens Elèves de l’Ecole Nationale des Ponts et Chaussées, pp. 141-148.Google Scholar
  17. Schlosser, F. and Elias, V. (1978), Friction in reinforced earth, Symposium on Earth Reinforcement, ASCE, Pittsburgh, pp. 735–763.Google Scholar
  18. Schlosser, F. and Guilloux, A. (1981), Le frottement dans le reinforcement des sols, Révue Française de Géotechnique, No. 16, pp. 66-77.Google Scholar
  19. Schlosser, F., Jacobsen, H. M., and Juran, I. (1983), Soil reinforcement, General Report, Proceedings, 8th ECSMFE, Helsinki, 3, pp. 83–104.Google Scholar
  20. Schlosser, F. and Bastick, M. (1985), Reinforced Earth: new aspects and new applications, 3rd International Geotechnical Seminar on Soil Improvement Methods, Singapore, pp. 273-284.Google Scholar
  21. Schlosser, F. and Delage, P. (1987), Reinforced soil retaining structures and polymeric materials, NATO Advanced Research Workshop on the Application of Polymeric Reinforcement in Soil Retaining Structures, Kingston, Canada, NATO ASI Series E147, published in 1988, pp. 3-65.Google Scholar
  22. Yang, Z. (1972), Strength and deformation characteristics of reinforced sand, Ph.D. Thesis, University of California, Los Angeles.Google Scholar

Copyright information

© Springer Science+Business Media New York 1991

Authors and Affiliations

  • F. Schlosser
    • 1
    • 2
  • M. Bastick
    • 3
  1. 1.Ecole National des Ponts et ChausséesParisFrance
  2. 2.TerrasolParisFrance
  3. 3.Terre Armée InternationalParisFrance

Personalised recommendations