Polyglutamylation as a Factor in the Trapping of 5-Methyltetrahydrofolate by Cobalamin-Deficient L1210 Cells

  • K. Fujii
  • T. Nagasaki
  • K. S. Vitols
  • F. M. Huennekens
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 163)


Cobalamin-deficient L1210 mouse leukemia cells, developed by propagation in a medium from which cyanocobalamin was omitted and fetal bovine serum was replaced by bovine serum albumin, grew normally on excess folate or 5-formyltetrahydrofolate. These cells responded poorly, however, to 5-methyltetrahydrofolate unless exogenous cobalamin was added. A cobalamin dependency was also observed when low levels of folate or 5-formyltetrahydrofolate were used. With 5-methyltetrahydrofolate, optimal stimulation of growth was observed with free and transcobalamin II-bound cobalamin at 4,000 and 2 pM, respectively. Under cobalamin-replete conditions, the average cobalamin content was ca. 3,000 molecules/cell, and in the deficient state this value declined to < 10 molecules/cell. Optimal replication on 5-methyltetrahydrofolate required ca. 180 molecules/cell.


L1210 Cell Deficient Cell Optimal Replication Intracellular Folate Methionine Synthetase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Herbert V, Larrabee AR and Buchanan JM (1962) J. Clin. Invest. 41: 1134–1138.PubMedCrossRefGoogle Scholar
  2. 2.
    Huennekens FM, Vitols KS and Henderson GB (1978) Advan. Enzymol. 47:313–346.Google Scholar
  3. 3.
    Das KC and Herbert V (1976) SPI In Clinics in Hematology, Hoffbrand AV (ed) Vol. 5, No. 3, pp. 697–725, W.B. Saunders, London.Google Scholar
  4. 4.
    Noronha JM and Silverman M (1962) SPI In Vitamin B12 and Intrinsic Factor (Proceedings of the Second European Symposium), Heinrich HC (ed) pp. 728–736, F. Enke, Stuttgart.Google Scholar
  5. 5.
    Herbert V and Zalusky R (1962) J. Clin. Invest. 41:1263–1276.PubMedCrossRefGoogle Scholar
  6. 6.
    Buchanan JM (1964) Medicine 43:697–709.PubMedCrossRefGoogle Scholar
  7. 7.
    Fujii K (1979) SPI In Chemistry and Biology of Pteridines, Kisliuk RL and Brown GM (eds) pp. 297–302, Elsevier/North Holland, New York.Google Scholar
  8. 8.
    Fujii K, Nagasaki T and Huennekens FM (1979)SPI In Vitamin B12 (Proceedings of the Third European Symposium), Zagalak B and Friedrich W (eds) pp. 1127–1130, Walter de Gruyter, Berlin.Google Scholar
  9. 9.
    Fujii K, Nagasaki T and Huennekens FM (1981) J. Biol. Chem. 256:10329–1033.PubMedGoogle Scholar
  10. 10.
    Dolphin D, Johnson AW and Rodrigo R (1964) J. Chem. Soc. 3186–3193.Google Scholar
  11. 11.
    Dolphin D (1971) Methods Enzymol. 18C:34–52.CrossRefGoogle Scholar
  12. 12.
    Blakley RL (1960) Nature 188:231–232.CrossRefGoogle Scholar
  13. 13.
    Hatefi Y, Talbert PT, Osborn MJ and Huennekens FM (1960)SPI In Biochemical Preparations, Lardy HA (ed) Vol. 7, pp. 89–92, John Wiley and Sons, New York.Google Scholar
  14. 14.
    Gupta VS and Huennekens FM (1967) Arch. Biochem. Biophys. 120:712–718.CrossRefGoogle Scholar
  15. 15.
    Moran RG, Werkheiser WC and Zakrzewski SF (1976) J. Biol. Chem. 251:3569–3575.PubMedGoogle Scholar
  16. 16.
    Osborn MJ, Talbert PT and Huennekens FM (1960) J. Amer. Chem. Soc. 82:4921–4927.CrossRefGoogle Scholar
  17. 17.
    Muller O and Muller G (1962) Biochem. Z. 336:299–313.Google Scholar
  18. 18.
    Eigen E and Shockman GD (1963) SPI. In Analytical Microbiology, Kavanagh F (ed) pp. 449–450, Academic Press, New York.Google Scholar
  19. 19.
    Fujii K and Huennekens FM (1974) J. Biol. Chem. 249: 6745–6753.PubMedGoogle Scholar
  20. 20.
    Fujii K, Galivan JH and Huennekens FM (1977) Arch. Biochem. Biophys. 178:662–670.PubMedCrossRefGoogle Scholar
  21. 21.
    Ceska M and Lundkvist U (1971) Clin. Chim. Acta 32:339–354.PubMedCrossRefGoogle Scholar
  22. 22.
    Lowry OH, Rosebrough NJ, Farr AL and Randall RJ (1951) J. Biol. Chem. 193:265–275.PubMedGoogle Scholar
  23. 23.
    Shin YS, Buehring KU and Stokstad ELR (1972) J. Biol. Chem. 247:7266–7269.PubMedGoogle Scholar
  24. 24.
    May M, Bardos TJ, Barger FL, Lansford M, Ravel JM, Sutherland GL and Shive W (1951) J. Amer. Chan. Soc. 73:3067–3075.CrossRefGoogle Scholar
  25. 25.
    Bird OD, McGlohon VM and Vaitkus JW (1969) Can. J. Microbiol. 15:465–472.PubMedCrossRefGoogle Scholar
  26. 26.
    Buehring KU, Tamura T and Stokstad ELR (1974) J. Biol. Chan. 249:1081–1089.Google Scholar
  27. 27.
    Das KC and Hoffbrand AV (1970) Brit. J. Haematol. 19:203–221.CrossRefGoogle Scholar
  28. 28.
    Tisman G and Herbert V (1973) Blood 41:465–469.PubMedGoogle Scholar
  29. 29.
    Chanarin I, Perry J and Lamb M (1974) Lancet i:1251–1252.CrossRefGoogle Scholar
  30. 30.
    Deacon R, Chanarin I, Perry J and Lamb M (1980) Biochem. Biophys. Res. Commun. 93:516–520.PubMedCrossRefGoogle Scholar
  31. 31.
    Taylor RT and Hanna ML (1977) Arch. Bioehem. Biophys. 181 : 331–344.CrossRefGoogle Scholar
  32. 32.
    McGuire JJ, Hsieh P, Coward JK and Bertino JR (1980) J. Biol. Chan. 255:5776–5788.Google Scholar
  33. 33.
    Jackson RC and Harrap KR (1973) Arch. Bioehem. Biophys. 158: 827–841.CrossRefGoogle Scholar
  34. 34.
    McGuire JJ, personal communication.Google Scholar
  35. 35.
    Rode W, Scanlon KJ, Moroson BA and Bertino JR (1980) J. Biol. Chem. 255:1305–1311.PubMedGoogle Scholar
  36. 36.
    Fujii K (1981) Fed. Proc. 40:1748.Google Scholar

Copyright information

© Springer Science+Business Media New York 1983

Authors and Affiliations

  • K. Fujii
    • 1
  • T. Nagasaki
    • 1
  • K. S. Vitols
    • 1
  • F. M. Huennekens
    • 1
  1. 1.Department of BiochemistryScripps Clinic and Research FoundationLa JollaUSA

Personalised recommendations