Predictions of a Network Thermodynamics Computer Model Relating to the Mechanism of Methotrexate Rescue by 5-Formyltetrahydrofolate and to the Importance of Inhibition of Thymidylate Synthase by Methotrexate-Polyglutamates

  • J. Courtland White
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 163)


Computer modeling has been a valuable tool for clarifying the mechanism of action of antifolates. Some consequences of folyl and antifolyl polyglutamate synthesis can be addressed by adaptation of a network thermodynamic computer model of methotrexate action. Reversal or prevention of methotrexate cytotoxcity by 5-formyltetrahydrofolate has widely been assumed to occur through the delivery of reduced folate in substrate amounts for thymidylate synthesis, bypassing the effects of methotrexate at dihydrofolate reductase. This mechanism is inconsistent with experimental data which shows that “rescue” is a competitive phenomenon and that the transport process is incapable of delivering reduced folate at an adequate rate. Computer modeling studies are presented which predict that expansion of the total folate pool as folylpolyglutamates with “rescue” would reduce the inhibitory effect of MTX on thymidylate synthesis. Dihydrofolate polyglutamates could then accumulate to the high level needed to displace methotrexate from the small fraction of sites on dihydrofolate reductase that are sufficient to sustain tetrahydrofolate synthesis. Experimental studies with Ehrlich ascites tumor cells support this prediction. It is likely that a critical step in the protection of normal host tissues in high dose-rescue treatment regimens is the conversion of exogenously supplied 5-formyltetrahydrofolate to polyglutamyl derivatives and accumulation of total intracellular folate to higher than normal levels. Other computer simulations are presented which examine the potential significance of direct inhibition of thymidylate synthase by polyglutamyl forms of methotrexate. The model predicts that in cells with biochemical properties similar to methotrexate sensitive L1210 cells, inhibiton of dihydrofolate reductase would still be the predominant site of action unless the thymidylate synthase Ki for a methotrexate polyglutamate is below about 0.1 µM. However, in methotrexate-resistant cells with elevated dihydrofolate reductase but normal membrane transport and polyglutamylation, thymidylate synthase may be the more important target enzyme.


Dihydrofolate Reductase Ehrlich Ascites Tumor Cell Total Folate Computer Modeling Study Intracellular Folate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Jackson RC, Hart LI and Harrap KR (1976) Cancer Res. 36:1991–1997.PubMedGoogle Scholar
  2. 2.
    White JC and Goldman ID (1981) J. Biol. Chem. 256:5722–5727.PubMedGoogle Scholar
  3. 3.
    Hill BT, Bailey BD, White JC and Goldman ID (1979) Cancer Res. 39:2440–2446.PubMedGoogle Scholar
  4. 4.
    Moran RG, Mulkins M and Heidelberger C (1979) Proc. Natl. Acad. Sci. 76:5924–5928.PubMedCrossRefGoogle Scholar
  5. 5.
    Garfinkel D (1981) Trends in Biochemical Sciences 2:69–71.CrossRefGoogle Scholar
  6. 6.
    Werkheiser WC (1971) Ann. N.Y. Acad. Sci. 186:343–358.PubMedCrossRefGoogle Scholar
  7. 7.
    Werkheiser WC, Grindey GB, Moran RG and Nichol CA (1973) Molec. Pharmacol. 9:320–329.Google Scholar
  8. 8.
    Jackson RC and Harrap KR (1973) Arch. Biochem. Biophys. 158:837–841.CrossRefGoogle Scholar
  9. 9.
    White JC (1979) J. Biol. Chem. 254:10889–10895.PubMedGoogle Scholar
  10. 10.
    Jackson RC and Harrap KR (1979) Pharmac. Ther. 4:245–280.CrossRefGoogle Scholar
  11. 11.
    Jackson RC (1980) Int. J. Bio-Medical Computing 11: 197–224.CrossRefGoogle Scholar
  12. 12.
    Thomas SR and Mikulecky DC (1978) Am. J. Physiol. 235:F638–F648.Google Scholar
  13. 13.
    Wyatt JL (1978) Comput. Prog. Biomed. 8:180–195.CrossRefGoogle Scholar
  14. 14.
    Mikulecky DC, Huf EG and Thomas SR (1979) Biophys. J. 25:87–106.PubMedCrossRefGoogle Scholar
  15. 15.
    Mikulecky DC (1979) Biophys. J. 25:323–340.PubMedCrossRefGoogle Scholar
  16. 16.
    Mikulecky DC and Thomas SR (1979) J. Franklin Inst. 308:309–325.CrossRefGoogle Scholar
  17. 17.
    White JC and Mikulecky DC (1982) Pharmac. Ther. 15:251–291.CrossRefGoogle Scholar
  18. 18.
    Goldman ID (1974) Molec. Pharmacol. 10:257–274.Google Scholar
  19. 19.
    Borsa J and Whitmore GF (1969) Molec. Pharmacol. 5:318–332.Google Scholar
  20. 20.
    Pinedo HM, Zaharko DC, Bull JM and Chabner BA (1976) Cancer Res. 36:4418–4424.PubMedGoogle Scholar
  21. 21.
    Nederbragt H, Uitendahl MP, van der Grint L, Leyva A and Pinedo HM (1981) Cancer Res. 41:1193–1198.PubMedGoogle Scholar
  22. 22.
    Greenspan EM, Goldin A and Schoenbach FB (1951) Cancer 4:619–625.PubMedCrossRefGoogle Scholar
  23. 23.
    Stoller RG, Kaplan HG, Cummings FJ and Calabresi P (1979) Cancer Res. 39:908–912.PubMedGoogle Scholar
  24. 24.
    Sauer H, Schalhorn A and Wiemanns W (1979) Eur. J. Cancer 15:1203–1209.PubMedCrossRefGoogle Scholar
  25. 25.
    Howell SB, Krishan A and Frei III, E (1979) Cancer Res. 39:1315–1320.PubMedGoogle Scholar
  26. 26.
    Szeto DW, Cheng YC, Rosowsky A, Yu CS, Modest EJ, Piper JR, Temple C, Elliott RD, Rose JD and Montgomery JA (1979) Biochem. Pharmacol. 28:2633–2637.PubMedCrossRefGoogle Scholar
  27. 27.
    Cheng YC, Szeto DW, Dolnick BJ, Rosowsky A, Yu CS, Modest EJ, Piper JR, Temple C, Elliott RD, Rose JD and Montgomery JA (1979) SPI In Chemistry and Biology of Pteridines, Kisluik RL and Brown GM (eds.), Elsevier, New York, 377–381.Google Scholar
  28. 28.
    White JC, Bailey BD and Goldman ID (1978) J. Biol. Chem. 253:242–245.PubMedGoogle Scholar
  29. 29.
    White JC and Goldman ID (1979)SPI in Chemistry and Biology of Pteridines (R.L. Kisliuk and G.M. Brown, eds.) 625–647, Elsevier, New YorkGoogle Scholar
  30. 30.
    Goldman ID, Lichtenstein NS and Oliverio VT (1968) J. Biol. Chem. 19:5007–5017.Google Scholar
  31. 31.
    Mizen NA and Peterman MC (1952) Cancer Res. 12:727–730.PubMedGoogle Scholar
  32. 32.
    Kirby KS (1959) Biochim. Biophys. Acta 36:117–124.PubMedCrossRefGoogle Scholar
  33. 33.
    Moran RG, Werkheiser WC and Zakrzewski SF (1976) J. Biol. Chem. 251:3569–3575.PubMedGoogle Scholar
  34. 34.
    White JC and Goldman ID (1976) Mol. Pharmacol. 12:711–719PubMedGoogle Scholar
  35. 35.
    White JC, Loftfield S and Goldman ID (1975) Mol. Pharmacol. 21:287–297.Google Scholar
  36. 36.
    McGuire JJ, Hsieh P, Coward JK and Bertino JR (1980) J. Biol. Chem. 255:5775–5788.Google Scholar
  37. 37.
    Hilton JG, Cooper BA and Rosenblatt DS (1979) J. Biol. Chem. 254:8398–8403.PubMedGoogle Scholar
  38. 38.
    Jackson RC, Niethammer D and Hart LI (1977) Arch. Biochem. Biophys. 182:646–656.PubMedCrossRefGoogle Scholar
  39. 39.
    Mead JAR, Venditti JM, Schrecker AW, Goldin A and Keresztesy JC (1963) Biochem. Pharm. 12:371–383.CrossRefGoogle Scholar
  40. 40.
    Lichtenstein NS, Oliverio VT and Goldman ID (1969) Biochim. Biophys. Acta 193:456–467.PubMedCrossRefGoogle Scholar
  41. 41.
    Bertino JR, Booth BA, Bieber AL, Cashmore A and Sartorelli AC (1964) J. Biol. Chan. 239:479–485.Google Scholar
  42. 42.
    Tattersall MHN, Jackson RC, Jackson STM and Harrap KR (1974) Eur. J. Cancer 10:819–826.PubMedCrossRefGoogle Scholar
  43. 43.
    Whitehead VM (1977) Cancer Res. 37:408–412.PubMedGoogle Scholar
  44. 44.
    Rosenblatt DA, Whitehead VM, Dupont MM, Vuchich MJ and Vera N (1978) Mol. Pharmacol. 14:210–214.PubMedGoogle Scholar
  45. 45.
    Galivan J (1980) Mol. Pharmacol. 17: 105–110.PubMedGoogle Scholar
  46. 46.
    Yalowich JC, Fry DW and Goldman ID (1981) Proc. Amer. Assoc. Cancer Res. 22:207.Google Scholar
  47. 47.
    Jacobs SA, Adamson RH, Chabner BA, Derr CJ and Johns DG (1975) Biochem. Biophys. Res. Comm. 63:692–698.PubMedCrossRefGoogle Scholar
  48. 48.
    Balinski M, Galivan J and Coward JK (1981) Cancer Res. 41:2751–2756.Google Scholar
  49. 49.
    Kisliuk RL and Gaumont Y (1979) SPI in Chemistry and Biology of Pteridines (R.L. Kisliuk and G.M. Brown, eds.) 431–435. Elsevier, New York.Google Scholar
  50. 50.
    Reyes P and Heidelberger C (1965) Mol. Pharmacol. 1:14–30.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1983

Authors and Affiliations

  • J. Courtland White
    • 1
  1. 1.Department of Biochemistry Bowman Gray School of MedicineWake Forest UniversityWinston-SalemUSA

Personalised recommendations