Skip to main content

Studies on the in Vivo Synthesis of Methotrexate Polyglutamates and their Efflux Properties in Normal, Proliferative, and Neoplastic Mouse Tissues

  • Chapter
Folyl and Antifolyl Polyglutamates

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 163))

Summary

Synthesis of poly-γ-glutamyl metabolites of methotrexate was demonstrated in mouse small intestine, liver and bone marrow, and in L1210 leukemia, Sarcoma 180 and Ehrlich tumor cells after sc injections of [3H]methotrexate to tumor bearing mice. Ion exchange chromatography of tissue extracts resolved six peaks of radioactivity believed to represent methotrexate and metabolites with up to 4 additional glutamyl residues. Polyglutamate formation in L1210 cells and small intestine was shown to be independent of dose at least to 400 mg/kg as long as intracellular levels of drug in excess of the di-hydrofolate reductase binding capacity (exchangeable) were maintained. Both the total amount of polyglutamates and the average length of the polyglutamyl chain increased with time as long as exchangeable level of drug were present intracellularily. The results also showed differences in the extent of metabolism of methotrexate polyglutamates among the tissues examined. Although, these differences were at times very large, there was no consistent correlation between these differences and other pharmacologic parameters or cytoxicity. Tumor cells appeared to synthesize more polyglutamates than the normal tissues examined. However, differences in total drug persistence and sensitivity to drug among tumor cells and among normal tissues did not reflect the relative extent of poly-glutamate synthesis in each group. We observed no selective retention of polyglutamates as compared to methotrexate by L1210 cells in vitro as indicated by the extracellular accumulation during efflux of methotrexate and the polyglutamates. This could only be demonstrated by allowing efflux of intracellular drug in the presence of extracellular dihydrofolate reductase, which averted hydrolysis of the polyglutamates. It is concluded that the extent of polyglutamate synthesis per se may not be a determinant of drug sensitivity in murine tissues. However, the accumulation of these metabolites may contribute in some way to overall therapeutic response or relative cytotoxicity.

This work was supported in part by Grants CA-08748 and CA-22764 and from the National Cancer Institute and CH-26 from The American Cancer Society. R. G. Poser was supported by a training grant (CA-09207) from the National Cancer Institute.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baugh, C. M., Krumdiek, C. L., and Nair, M. G., Biochem. Bio-phys. Res. Commun., 52, 27–34 (1973).

    Article  CAS  Google Scholar 

  2. Gerwitz, D. A., White, J. C, Randolph, J. K., and Goldman, I. D., Cancer Res., 39, 2914–2918 (1979).

    Google Scholar 

  3. Whitehead, V. M., Perrault, M. M., and Stelcner, S., Cancer Res., 35, 2985–2900 (1975).

    PubMed  CAS  Google Scholar 

  4. Galivan, J., Cancer Res., 39, 735–743 (1979).

    PubMed  CAS  Google Scholar 

  5. Whitehead, V. M., Cancer Res., 37, 408–412 (1977).

    PubMed  CAS  Google Scholar 

  6. Jacobs, S. A., Adamson, R. H., Chabner, B. A., Derr, C. J., and Johns, D. G., Biochem. Biophys. Res. Commun., 63, 692–698 (1975).

    Article  PubMed  CAS  Google Scholar 

  7. Sirotnak, F. M., Chello, P. L., Piper, J. R., and Montgomery, J. A., Biochem. Pharm., 27, 1821–1825 (1978).

    Article  PubMed  CAS  Google Scholar 

  8. Werkheiser, W. C, Cancer Res., 23, 1277–1285 (1963).

    PubMed  CAS  Google Scholar 

  9. Nair, M. G., and Baugh, C. M., Biochemistry, 12, 3923–3927 (1973).

    Article  PubMed  CAS  Google Scholar 

  10. Galivan, J., Mol. Pharm., 17, 105–110 (1980).

    CAS  Google Scholar 

  11. Schilsky, R. L., Barteg, B. D., and Chabner, B. A., Proc. Natl. Acad. Sci., 77, 2919–2922 (1980).

    Article  PubMed  CAS  Google Scholar 

  12. Sirotnak, F. M., Pharmac. Thera., 8, 71–103 (1980).

    Article  CAS  Google Scholar 

  13. Hutchison, D. J., Robinson, D. L., Martin, D., Ittensohn, O. L., and Dillenberg, Cancer Res., 22, 57–72 (1962).

    PubMed  Google Scholar 

  14. Sirotnak, F. M., Donati, G. J., and Hutchison, D. J., J. Bacteriol., 85, 658–665 (1963).

    PubMed  CAS  Google Scholar 

  15. Philips, F. S., Sirotnak, F. M., Sodergren, J. E., and Hutchison, D. J., Cancer Res., 33, 153–158 (1973).

    PubMed  CAS  Google Scholar 

  16. Hutchison, D. J., Philips, F. S., Schmid, F. A., Sodergren, J. E., and Sternberg, S. S., Proc. Amer. Assoc. Cancer Res., 13, 18 (1972).

    Google Scholar 

  17. Sirotnak, F. M., and Donsbach, R. C., Cancer Res., 15, 1737–1744 (1975).

    Google Scholar 

  18. Coward, J. K., Chello, P. L., Cashmore, A. R., Parameswaran, K. N., DeAngelis, L. M., and Bertina, J. R., Biochemistry, 14, 1538–1552 (1975).

    Article  Google Scholar 

  19. Sirotnak, F. M., and Hachtel, S. L., Genetics, 61, 293–312 (1969).

    PubMed  CAS  Google Scholar 

  20. Rosenblatt, D. S., Whitehead, V. M., Vera, N., Pottier, A., Dupont, M., and Vuchich, M.-J., Mol. Pharm., 14, 1143–1147 (1978).

    CAS  Google Scholar 

  21. Poser, R. G., Sirotnak, F. M., and Chello, P. L., Biochem. Pharmacol., 29, 2701–2704 (1980).

    Article  PubMed  CAS  Google Scholar 

  22. Sirotnak, F. M., and Moccio, D. M., Cancer Res., 40, 1230–1234 (1980).

    PubMed  CAS  Google Scholar 

  23. Dembo, M., and Sirotnak, F. M., Biochem. Biophys. Acta, 448, 505–516 (1976).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Springer Science+Business Media New York

About this chapter

Cite this chapter

Poser, R.G., Sirotnak, F.M. (1983). Studies on the in Vivo Synthesis of Methotrexate Polyglutamates and their Efflux Properties in Normal, Proliferative, and Neoplastic Mouse Tissues. In: Goldman, I.D., Chabner, B.A., Bertino, J.R. (eds) Folyl and Antifolyl Polyglutamates. Advances in Experimental Medicine and Biology, vol 163. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-5241-0_20

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-5241-0_20

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-5243-4

  • Online ISBN: 978-1-4757-5241-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics