Potential Health Benefits from the Flavonoids in Grape Products on Vascular Disease

Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 505)


In spite of recent advances in diagnosis and treatment, coronary artery disease and cerebral artery disease continue to be the leading causes of mortality and morbidity in the United States (Scharf and Harker, 1987; Lenfant, 1999). More than 1 million people had heart attacks last year in the U.S. and one-third of them died from their first heart attack (Lenfant, 1999). Thus there is considerable interest in the prevention of coronary and cerebral artery disease. The underlying pathogenesis of these problems is atherosclerotic vascular disease. This is marked by the chronic silent evolution of atheromas over many years, from as early as age 10 up to ages 40–50 years. Then an acute thrombotic phase appears with plaque rupture, the onset of unstable angina, and fatal or nonfatal myocardial or cerebral infarction (Scharf and Harker, 1987; Loscalzo, 1990; Ross, 1986).


Vascular Smooth Muscle Cell Arterial Wall Brachial Artery Grapefruit Juice Grape Juice 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adams, A. K., Wermuth, W. O., and McBride, P. E., 1999, Antioxidant vitamins and the prevention of coronary heart disease, Amer. Fam. Phys. 60: 895–904.Google Scholar
  2. Afanas’ev, I. B., Dorozhko, A. I., Brodskii, A. V., Kostyuk, V. A., and Potapovitch, A. I., 1989, Chelating and free radical scavenging mechanisms of inhibitory action of rutin and quercetin in lipid peroxidation, Biochem. Pharmacol. 38: 1763–1769.CrossRefGoogle Scholar
  3. Anderson, T. J., Uehata, A., Gerhard, M. D., Meredith, I. T., Knab, S., Delagrange, D., Lieberman, E. H., Ganz, P., Creager, M. A., and Yeung, A. C., 1995, Close relation of endothelial function in the human coronary and peripheral circulations, JACC 26: 1235–1241.CrossRefGoogle Scholar
  4. Aviram, M., Dankner, G., Brook, and J. G., 1990, Platelet secretory products increase low density lipoproteinGoogle Scholar
  5. oxidation, enhance its uptake by macrophages, and reduce its fluidity, Arteriosclerosis 10:559–563.Google Scholar
  6. Bocan, T. M., 1998, Animal models of atherosclerosis and interpretation of drug intervention studies [Review], Current Pharmaceutical Design 4:37–52.Google Scholar
  7. Bogaty, P., Hackett, D., Davies, G., and Maseri, A., 1994, Vasoreactivity of the culprit lesion in unstable angina, Circulation 90: 5–11.CrossRefGoogle Scholar
  8. Bossaller, C., Habib, G. B., Yamamoto, H., Williams, C., Wells, S., and Henry, P. D., 1987, Impaired muscarinic endothelium-dependent relaxation and cyclic guanosine-5-monophosphate formation in atherosclerotic human coronary artery and rabbit aorta, J. Clin. Invest. 79: 170–174.CrossRefGoogle Scholar
  9. Cardinal, D. C., and Flower, R. J., 1980, The electronic aggregometer: A novel device for assessing platelet behavior in blood, J. Pharmacol. Methods 3: 135–158.CrossRefGoogle Scholar
  10. Cavallini, L., Bindoli, A., and Siliprandi, N., 1978, Comparative evaluation ofantiperoxidative action ofsilymarin and other flavonoids, Pharmacol. Res. Commun. 10: 133–136.CrossRefGoogle Scholar
  11. Cook, N. C., and Samman, S., 1996, Flavonoids - chemistry, metabolism, cardioprotective effects, and dietary sources, J. Nutr. Biochem. 7: 66–76.CrossRefGoogle Scholar
  12. Cooke, J. P., Stamler, J., Andon, N., Davies, P. F., McKinley, G., and Loscalzo, J., 1990, Flow stimulates endothelial cells to release a nitrovasodilator that is potentiated by reduced thiol, Am. J. Physiol. 259: H804–12.Google Scholar
  13. Das, N. P., and Ratty, A. K., 1986, Effects of flavonoids on induced non-enzymic lipid peroxidation, In Plant Flavonoids in Biology and Medicine: Biochemical. Pharmacological and Structure-Activity Relationships, Cody, V., Middleton, E., and Harborne, J. B., Alan R. Liss, New York, NY, pp. 243–247.Google Scholar
  14. Demrow, H. S., Slane, P. R., and Folts, J. D., 1995, Administration of wine and grape juice inhibits in vivo platelet activity and thrombosis in stenosed canine coronary arteries, Circulation 91: 1182–1188.CrossRefGoogle Scholar
  15. DeWhalley, C. V., 1990, Flavonoids inhibit the oxidative modification of low density lipoproteins by macrophages, Biochem. Pharmacol. 39: 1743–1750.CrossRefGoogle Scholar
  16. Duthie, G. G., and Bellizzi, M. C., 1999, Effects of antioxidants on vascular health, British Medical Bulletin 55: 568–577.CrossRefGoogle Scholar
  17. Eberhard, T. P., 1936, Effect of alcohol on cholesterol-induced atherosclerosis in rabbits, Arch. Pashol. 21: 616–627.Google Scholar
  18. Esterbauer, H., Gebicki, J., Puhl, H., and Jurgens, G., 1992, The role of lipid peroxidation and antioxidants in oxidative modification of LDL, Free Radic. Biol. Med. 13: 341–390.CrossRefGoogle Scholar
  19. Facing, R. M., Carina, M., Bombardelli, E., Morazzoni, P., and Morelli, R., 1994, Free radicals scavenging action andGoogle Scholar
  20. anti-enzyme activities of procyanidines from Vitis vinifera, Arzneimittel-Forschung 44:592–601.Google Scholar
  21. Fitzpatrick, D. F., Hirschfield, S. L., and Coffey, R. G., 1993, Endothelium-dependent vasorelaxing activity of wineGoogle Scholar
  22. and other grape products, Am. J. Physiol. 265(2pt2):H774–H778.Google Scholar
  23. Folts, J. D., 1998, Antithrombotic potential of grape juice and red wine for preventing heart attacks, Pharm. Biol. 36: 1–7.CrossRefGoogle Scholar
  24. Folts, J. D., Loscalzo, J., Muller, J. E., Schafer, A. I., and Willerson, J. T., 1999, A perspective on the potential problems with aspirin as an antithrombotic agent: A comparison of studies in an animal model with clinical trials, JACC 33: 295–303.CrossRefGoogle Scholar
  25. Folts, J. D., and Rowe, G. G., 1988, Epinephrine potentiation of in vivo stimuli reverses aspirin inhibition of platelet thrombus formation in stenosed canine coronary arteries, Thromb. Res. 50: 507–516.CrossRefGoogle Scholar
  26. Fraga, C. G., Martino, V. S., Ferraro, G. E., Coussio, J. D., and Boveris, A., 1987, Flavonoids as antioxidants evaluated by in vitro and in situ liver chemiluminescence, Biochem. Pharmacol. 36: 717–720.CrossRefGoogle Scholar
  27. Frankel, E. N., Kanner, J., German, J. B., Parks, E., and Kinsella, J. E., 1993, Inhibition of oxidation of human low-density lipoprotein by phenolic substances in red wine, Lancet 341: 454–457.CrossRefGoogle Scholar
  28. Fuhrman, B., Lavy, A., and Aviram, M., 1995, Consumption of red wine with meals reduces the susceptibility ofhuman plasma and low-density lipoprotein to lipid peroxidation, Am. J. Clin. Nutr. 61: 549–554.Google Scholar
  29. Gross, D. R., 1985, Animal Models in Cardiovascular Research, Martinus Nijhoff Publishers, Boston, MA, Gryglewski, R. J., 1987, On the mechanism of antithrombotic action of flavonoids, Biochem. Pharmacol. 36: 317–322.Google Scholar
  30. Hertog, M. G., Feskens, E. J., Hollman, P. C., Katan, M. B., and Kromhout, D., 1993, Dietary antioxidant flavonoidsGoogle Scholar
  31. and risk of coronary heart disease: The Zutphen Elderly Study, Lancet 342: 1007–1011.Google Scholar
  32. Hertog, M. G., Kromhout, D., Aravanis, C., Blackburn, H., Buzina, R., Fidanza, F., Giampaoli, S., Jansen, A., Menotti, A., and Nedeljkovic, S., 1995, Flavonoid intake and long-term risk of coronary heart disease and cancer in the seven countries study, Arch. Intern. Med. 155: 381–386.CrossRefGoogle Scholar
  33. Holvoet, P., and Collen, D., 1998, Oxidation of low density lipoprotein in the pathogenesis of atherosclerosis, Atherosclerosis 137 (Suppl.): S33–S38.CrossRefGoogle Scholar
  34. Itakura, H., 1999, Antiatherogenic effects of non-alcoholic ingredients in alcoholic beverages, In: Moderate Alcohol Consumption and Cardiovascular Disease, Congressi e Workshop NFI, Venice, Italy, October 30–31, 1999, Centro Studi dell’Alimentazione (Nutrition Foundation of Italy), ( Abstr. ).Google Scholar
  35. Kauhanen, J., Kaplan, G. A., Goldberg, D. E., Salonen, R., and Salonen, J. T., 1999, Pattern of alcohol drinking and progression of atherosclerosis, Arterioscler. Thromb. Vasc. Biol. 19: 3001–3006.CrossRefGoogle Scholar
  36. Keevil, J., Osman, H. E., Reed, J., and Folts, J. D., 2000, Grape juice, but not orange or grapefruit juices, inhibit human platelet aggregation, J. Clin. Nutr. 130: 53–56.Google Scholar
  37. Keli, S. O., Hertog, M. G., Feskens, E. J., and Kromhout, D., 1996, Dietary flavonoids, antioxidant vitamins, and incidence of stroke: The Zutphen study, Arch. Intern. Med. 156: 637–642.CrossRefGoogle Scholar
  38. Key, T. J., Thorogood, M., Appleby, P. N., and Burr, M. L., 1996, Dietary habits and mortality in 11,000 vegetarians and health conscious people: Results of a 17-year follow-up, BMJ313:175–779.Google Scholar
  39. Kinsella, J. E., Frankel, E., German, B., and Kanner, J., 1993, Possible mechanisms for the protective role of antioxidants in wine and plant foods, Food Technology 47: 85–89.Google Scholar
  40. Klurfeld, D. M., and Kritchevsky, D., 1981, Differential effects of alcoholic beverages on experimental atherosclerosis in rabbits, Experimental and Molecular Pathology 34: 62–71.CrossRefGoogle Scholar
  41. Knekt, P., Jarvinen, R., Reunanen, A., and Maatela, J., 1996, Flavonoid intake and coronary mortality in Finland — a cohort study, BMJ 312: 478–481.CrossRefGoogle Scholar
  42. Lenfant, C., 1999, Conquering cardiovascular disease, JAMA 282: 2068–2070.CrossRefGoogle Scholar
  43. Loscalzo, J., 1990, A unique risk factor for atherothrombotic disease, Atherosclerosis 10: 672–679.Google Scholar
  44. Maclure, M., 1993, Demonstration of deductive meta-analysis: ethanol intake and risk of myocardial infarction, Epidemiologic Reviews 15: 328–351.Google Scholar
  45. Maxwell, S., Cruickshank, A., and Thorpe, G., 1994, Red wine and antioxidant activity in serum, Lancet 344:193–194. Miyagi, Y., Miwa, K., and Inoue, H., 1997, Inhibition ofhuman low-density lipoprotein oxidation by flavonoids in red wine and grape juice, Am. J. Cardiol. 80: 1627–1631.Google Scholar
  46. Navab, M., Berliner, J. A., Watson, A. D., Hama, S. Y., Territo, M. C., Lusis, A. J., Shih, D. M., Frank, J. S., Demer, L. L., Edwards, P. A., and Fogelman, A. M., 1996, The Yin and Yang of oxidation in the development of the fatty streak. A review based on the 1994 George Lyman Duff Memorial Lecture, Arterioscler. Thromb. Vasc. Biol. 16: 831–842.CrossRefGoogle Scholar
  47. Neunteufl, T., Kostner, K., Katzenschlager, R., Zehetgruber, M., Maurer, G., and Weidinger, F., 1998, Additional benefit of vitamin E supplementation to simvastatin therapy on vasoreactivity of the brachial artery of hypercholesterolemic men, J. Amer. Coll. Cardiol. 32: 711–716.CrossRefGoogle Scholar
  48. Okumura, K., Yasue, H., Matsuyama, K., Ogawa, H., Morikami, Y., Obata, K., and Sakaino, N., 1992, Effect of acetylcholine on the highly stenotic coronary artery: difference between the constrictor response of the infarct-related coronary artery and that of the noninfarct-related artery, JACC 19: 752–758.CrossRefGoogle Scholar
  49. Osman, H. E., Maalej, N., Shanmuganayagam, D., and Folts, J. D., 1998, Grape juice but not orange or grapefruit juice inhibits platelet activity in dogs and monkeys, J. Nutr. 128: 2307–2312.Google Scholar
  50. Parker, C., Deak, L., Frei, B., Folts, J. D., and Freedman, J. E., 2000, Oral consumption of purple grape juice inhibits platelet function and increases platelet-derived nitric oxide release, JACC 35: 267A (Abstract).Google Scholar
  51. Pignol, B., Etienne, A., Crastes, de, Paulet, A., Deby, C., Mencia-Huerta, J. M., and Braquet, P., 1988, Role of flavonoids in the oxygen-free radical modulation of the immune response, in Plant Flavonoids in Biology and Medicine 11. Biochemical, Cellular and Medicinal Properties, Cody, V., ed., Alan R. Liss, Inc., New York, NY, pp. 173–182.Google Scholar
  52. Rabbani, L. E., and Loscalzo, J., 1994, The relationship between thrombosis and atherosclerosis, in Thrombosis and Google Scholar
  53. Hemorrhage,Loscalzo, J., and Schafer, A.1., Blackwell Scientific Publications, Boston, MA, pp. 771–773.Google Scholar
  54. Ribereau-Gayon, P., 1982, The anthocyanins of grapes and wines,in Anthocyanins as Food Colors, Markakis, P., ed., Academic Press, New York, NY, pp. 209–244.Google Scholar
  55. Ross, R., 1986, The pathogenesis of atherosclerosis: An update, New Engl. J. Med. 314: 488–500.CrossRefGoogle Scholar
  56. Rubanyi, G. M., Romero, J. C., and Vanhoutte, P. M., 1986, Flow-induced release of endothelium-derived relaxing factor, Amer. J. Physiol. 250: H1145–9.Google Scholar
  57. Rusznyâk, S., and Szent-Györgyi, A., 1936, Vitamin P: Flavonols as vitamins, Nature (Lond.) 138: 27Google Scholar
  58. Scharf, R. E., and Harker, L. A., 1987, Thrombosis and atherosclerosis: Regulatory role of interactions among blood components and endothelium, Blut 55: 131–144.CrossRefGoogle Scholar
  59. Schroeder, S., Enderle, M. D., Ossen, R., Meisner, C., Baumbach, A., Pfohl, M., Herdeg, C., Oberhoff, M., HaeringGoogle Scholar
  60. H. U., and Karsch, K. R., 1999, Noninvasive determination of endothelium-mediated vasodilation as a screening test for coronary artery disease: Pilot study to assess the predictive value in comparison with angina pectoris, exercise electrocardiography, and myocardial perfusion imaging, Amer. Heart J. 138: 731–738.CrossRefGoogle Scholar
  61. Shanmuganayagam, D., Warner, T., and Folts, J. D., 1999, Effect of purple grape juice on platelet activity and development of atherosclerosis in hypercholesterolemic rabbits, FASEB 13: 239A (Abstract).Google Scholar
  62. Sherry, S., 1984, Aspirin and antiplatelet drugs: The clinical approach, Cardiovasc. Rev. Rep. 5: 1208–1219.Google Scholar
  63. Sies, H., 1993, Strategies of antioxidant defense, Eur. J. Biochem. 215: 213–219.CrossRefGoogle Scholar
  64. Silva, J. M., Riguld, J., Cheynier, V., Cheminat, A., and Moutounet, M., 1991, Procyanidin dimers and trimers from grape seeds. Phytochemistry 30: 1259–1264.CrossRefGoogle Scholar
  65. Singleton, K., 1981, Flavonoids, in Advances in Food Research, Childester, C. O., Mark, E. M., and Stewart, G. F., eds., Academic Press, New York, NY, pp. 149–242.Google Scholar
  66. Solzbach, U., Hornig, B., Jeserich, M., and Just, H., 1997, Vitamin C improves endothelial dysfunction of epicardial coronary arteries in hypertensive patients, Circulation 96: 1513–1519.CrossRefGoogle Scholar
  67. Stein, J. H., Keevil, J. G., Wiebe, D. A., Aeschlimann, S., and Folts, J. D., 1999, Purple grape juice improves endothelial function and reduces the susceptibility of LDL cholesterol to oxidation in patients with coronary artery disease, Circulation 100: 1050–1055.CrossRefGoogle Scholar
  68. Takase, B., Uehata, A., Akima, T., Nagai, T., Nishioka, T., Hamabe, A., Satomura, K., Ohsuzu, F., and Kurita, A., 1998, Endothelium-dependent flow-mediated vasodilation in coronary and brachial arteries in suspected coronary artery disease, Amer. J. Cardiol. 82:1535–9, A7–8.Google Scholar
  69. Ting, H. H., Timimi, F. K., Haley, E. A., Roddy, M. A., Ganz, P., and Creager, M. A., 1997, Vitamin C improves endothelium-dependent vasodilation in forearm resistance vessels of humans with hypercholesterolemia, Circulation 95: 2617–2622.CrossRefGoogle Scholar
  70. van der Loo, B., and Martin, J. F., 1997, The adventitia, endothelium and atherosclerosis [Review], Internat. J. Microcirculation: Clinical & Experimental 17: 280–288.CrossRefGoogle Scholar
  71. van Hinsbergh, V. W., Scheffer, M., Havekes, L., and Kempen, H. J., 1986, Role of endothelial cells and their products in the modification of low-density lipoproteins, Biochem. Biophys. Res. Commun. 878: 49–64.Google Scholar
  72. Vinson, J. A., 1998, Flavonoids in foods as in vitro and in vivo antioxidants, in Flavonoids in The Living System Google Scholar
  73. Manthey, J. A., and Buslig, B. S., Plenum Press, New York, NY, pp. 151–164.Google Scholar
  74. Vinson, J. A., Jang, J., Dabbagh, Y. A., Serry, M. M., and Cai, S., 1995, Plant polyphenols exhibit lipoprotein-bound antioxidant activityusing an in vitro model for heart disease, J. Agric. Food Chem. 43: 2798–2799.CrossRefGoogle Scholar
  75. Vita, J. A., Keaney, J. F., and Loscalzo, J., 1996, Endothelial dysfunction in vascular disease, in Vascular Medicine: A Textbook of Vascular Biology and Disease, Loscalzo, J., Creager, M. A., and Dzau, V. J., eds., Little, Brown & Co., Boston, MA, pp. 245–246.Google Scholar
  76. Wagner, A. H., Kohler, T., Ruckschloss, U., Just, I., and Hecker, M., 2000, Improvement of nitric oxide-dependent vasodilation by HMG-CoA reductase inhibitors through attenuation of endothelial superoxide anion formation, Arterroscler. Thromb. Vasc. Biol. 20: 61–69.CrossRefGoogle Scholar
  77. Wang, H., Cao, G., and Prior, R. L., 1996, Total antioxidant capacity of fruits, J. Agric. Food Chem. 44: 701–705.CrossRefGoogle Scholar
  78. Waterhouse, A. L., German, J. B., Franke, E. N., Walzern, R. L., Teissedre, P. L., and Folts, J. D., 1997, The phenolic phytochemicals in wine, fruit and tea: Dietary levels, absorption and potential nutritional effects, In Hypernutritious Foods, Finley, J. W., Armstrong, D. J., Nagy, S., and Robinson, S. F., eds., AgScience, Inc., Auburndale, FL, pp. 219–238.Google Scholar
  79. Waterhouse, A. L., and Teissedre, P., 1997, Levels of phenolics in California varietal wines, in Wine: Nutritional and Therapeutic Benefits, Watkins, T. R., ed., American Chemical Society, Washington, DC, pp. 12–23.CrossRefGoogle Scholar
  80. Whitehead, T. P., Robinson, D., Allaway, S., Syms, J., and Hale, A., 1995, Effect of red wine ingestion on the antioxidant capacity of serum, Clin. Chem. 41: 32–35.Google Scholar
  81. Wilson, T., Knight, T. J., Beitz, D. C., Lewis, D. S., and Engen, R. L., 1996, Resveratrol promotes atherosclerosis in hypercholesterolemic rabbits, Life Sciences 59:PLI5–21.Google Scholar
  82. Yuting, C., Rongliang, Z., and Zhongjian, J., 1990, Flavonoids as superoxide scavengers and antioxidants, Free Radic. Biol. Med. 9: 19–21.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  1. 1.Coronary Thrombosis Research LaboratoryUniversity of Wisconsin Medical SchoolMadisonUSA

Personalised recommendations