The Use of a Photoactivatable Kaempferol Analogue to Probe the Role of Flavonol 3-O-Galactosyltransferase in Pollen Germination

  • Loverine P. Taylor
  • Keith D. Miller
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 505)


Flavonol induced pollen germination in petunia is rapid, specific, and achieved at low concentrations of kaempferol or quercetin. To determine the macromolecules that interact with the flavonol signal we have synthesized affinity-tagged kaempferol analogues. The first generation molecules are based on a benzophenone photophore. We find that 2-(3-benzoylphenyl)-3,5,7-trihydroxychromen-4-one (BPKae) antagonizes flavonol-induced pollen germination in a concentration-dependent manner. Further, BPKae acts as an irreversible inhibitor of flavonol 3-O-galactosyltransferase (F3GalTase), the gametophyte-specific enzyme that controls the accumulation of glycosylated flavonols in pollen. The effects of BPKae are mediated by UV-A light treatment. The binding characteristics of BPKae to F3GalTase suggest that it can be used to identify the residues required for flavonol-binding and catalysis.


Tube Growth Pollen Germination Flavonol Glycoside Affinity Probe Bioactive Small Molecule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allan, J., and Robinson, R., 1924, An accessible derivative of chromonol, J. Chem. Soc. 125: 2192–2195.CrossRefGoogle Scholar
  2. Chowdhry, V., and Westheimer, F. H., 1979, Photoaffinity labeling of biological systems, Ann. Rev. Biochem. 48: 293325.Google Scholar
  3. Dorman, G., and Prestwich, G. D., 1994, Benzophenone photophores in biochemistry, Biochemistry 33: 5661–5673.CrossRefGoogle Scholar
  4. Grandmaison, J., and Ibrahim, R. K., 1996, Evidence for nuclear protein binding of flavonol sulfate esters in Flaveria cloraefolia, J. Plant Physiol. 147: 653–660.CrossRefGoogle Scholar
  5. Györgypal, Z., Kiss, G. B., and Kondorosi, A., 1991, Transduction of plant signal molecules by the Rhizobium NodD proteins, Bioessays 13: 575–581.CrossRefGoogle Scholar
  6. Ishikura, N., and Mato, M., 1993, Partial purification and some properties of flavonol 3-O-glycosyltransferases from seedlings of Vigna mungo with special reference to the formation of kaempferol-3-O-galactoside and the 3–0-glucoside, Plant Cell Physiol. 34: 329–335.Google Scholar
  7. Miller, K. D., Guyon, V., Evans, J. N. S., Shuttleworth, W. A., and Taylor, L. P., 1999, Purification, cloning, and heterologous expression of a catalytically efficient flavonol 3-O-galactosyltransferase expressed in the male gametophyte of Petunia hybrida, J. Biol. Chem. 274: 34011–34019.CrossRefGoogle Scholar
  8. Mo, Y., Nagel, C., and Taylor, L. P., 1992, Biochemical complementation ofchalcone synthase mutants defines a role for flavonols in functional pollen, Proc. Natl. Acad. Sci. USA 89: 7213–7217.CrossRefGoogle Scholar
  9. Pollak, P. E., Vogt, T., Mo, Y., and Taylor, L. P., 1993, Chalcone synthase and flavonol accumulation in stigmas and anthers of Petunia hybrida, Plant Physiol. 102: 925–932.Google Scholar
  10. Ruoho, A. E., Kiefer, H., Roeder, P. E., and Singer, S. J., 1973, The mechanism of photoaffinity labeling, Proc. Natl. Acad. Sci. USA 70: 2567–2571.CrossRefGoogle Scholar
  11. Tanaka, H., Stohlmeyer, M. M., Wandless, T. J., and Taylor, L. P., 2000, Synthesis of flavonol derivatives as probes of biological processes, Tetrahedron Lett. 41: 9735–9739.CrossRefGoogle Scholar
  12. Taylor, L. P., and Hepler, P. R., 1997, Pollen germination and tube growth, Ann. Rev. Plant Phys. Plant Mol. Biol. 48: 461–491.CrossRefGoogle Scholar
  13. Taylor, L. P., and Jorgensen, R., 1992, Conditional male fertility in chalcone synthase-deficient petunia, J. of Hered. 83: 11–17.Google Scholar
  14. Taylor, L. P., Strenge, D., and Miller, K., 1998, The role of glycosylation in flavonol-induced pollen germination, In Flavonoids in the Living System, Manthey, J. A., and Buslig, B. S., eds., Plenum Press, New York pp. 35–44.CrossRefGoogle Scholar
  15. Vogt, T., and Taylor, L. P., 1995, Flavonol 3-O-glycosyltransferases associated with petunia pollen produce gametophyte-specific flavonol diglycosides, Plant Physiol. 108: 903–911.CrossRefGoogle Scholar
  16. Vogt, T., Wollenweber, E., and Taylor, L. P., 1995, The structural requirements of flavonols that induce pollen germination of conditionally male fertile Petunia, Phytochemistry 38: 589–592.CrossRefGoogle Scholar
  17. Vogt, T., Zimmermann, E., Grimm, R., Meyer, M., and Strack, D., 1997, Are the characteristic of betanidin glucosyltransferases from cell-suspension cultures of Dorotheanthus bellidiformis indicative of their phylogenic relationship with flavonoid glucosyltransferases? Planta 203: 349–361.CrossRefGoogle Scholar
  18. Woo, H.-H., Orbach, M. J., Hirsch, A. M., and Hawes, M. C., 1999, Meristem localized inducible expression ofa UDP-glycosyltransferase gene is essential for growth and development in pea and alfalfa, Plant Cell 11:2303–2315.Google Scholar
  19. Xu, P., Vogt, T., and Taylor, L. P., 1997, Uptake and metabolism of flavonols during in vito germination and tube growth of petunia pollen, Planta 202: 257–265.CrossRefGoogle Scholar
  20. Zerback, R., Bokel, M., Geiger, H., and Hess, D., 1989, A kaempferol 3-glucosylgalactoside and further flavonoids from pollen of Petunia hybrida, Phytochemistry 28: 897–899.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Loverine P. Taylor
    • 1
  • Keith D. Miller
  1. 1.School of Molecular BiosciencesWashington State UniversityPullmanUSA

Personalised recommendations