Signalling in Arbuscular Mycorrhiza: Facts and Hypotheses

  • Horst Vierheilig
  • Yves Piché
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 505)


The arbuscular mycorrhizal symbiosis is an association between plant roots and fungi. Arbuscular mycorrhizal fungi (AMF) colonize roots improving plant nutrition mainly by transferring phosphate (P) from the soil to the plant, whereas plants provide the fungi with carbohydrates (Smith and Read, 1997). In contrast to the rhizobial symbiosis with a host range limited to the Leguminoseae, AMF form symbiotic associations with a wide range of plant species. Interestingly, there seem to be striking similarities between signalling in rhizobial and arbuscular mycorrhizal symbiosis (reviewed by Hirsch and Kapulnik, 1998). Apart from the effect of plant derived secondary plant compounds (SPC) on the bacterial and the fungal symbiont, SPC (e.g. flavonoids) are accumulated in the roots of the respective host plants during the establishment of both symbioses. Whereas there is some information on the role of SPC in the rhizobial symbiosis, the exact role of SPC during the establishment of the AM symbiosis still remains unclear.


Arbuscular Mycorrhizal Fungus Mycorrhizal Fungus Root Exudate Jasmonic Acid Arbuscular Mycorrhiza 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Albrecht, C., Geurts, R., Lapeyrie, F., and Bisseling, T., 1998, Endomycorrhizae and rhizobial nod factors both require SYM8 to induce the expression of the early nodulin genes PsENOD5 and PsENODI2A, Plant J. 15: 605–614.CrossRefGoogle Scholar
  2. Azcon-Aguilar, C., and Barea, J. M., 1996, Arbuscular mycorrhizas and biological control of soil-borne plant pathogens–An overview of the mechanisms involved, Mycorrhiza 6: 457–464.CrossRefGoogle Scholar
  3. Bärtschi, H., Gianinazzi-Pearson, V., and Vegh, I., 1981, Vesicular-arbuscular mycorrhiza formation and root-rot disease (Phytophthora cinnamomi Rands) development in Chamaecyparis lawsoniana (Mum) Part, Phytopathol. Z. 102: 213–218.CrossRefGoogle Scholar
  4. Bansal, M., and Mukerji, K. G., 1994, Positive correlation between VAM-induced changes in root exudation and mycorrhizosphere mycoflora, Mycorrhiza 5: 39–44.CrossRefGoogle Scholar
  5. Bécard, G., Douds, D. D., and Pfeffer, P. E., 1992, Extensive in vitro hyphal growth of vesicular-arbuscular mycorrhizal fungi in the presence of CO, and flavonols, Appl. Environ. Microbiol. 68: 1260–1264.Google Scholar
  6. Bécard, G., Taylor, L. P., Douds, D. D., Pfeffer, P. E., and Doner, L. W., 1995, Flavonoids are not necessary plant signal compounds in arbuscular mycorrhizal symbiosis, MPMI 8: 252–258.CrossRefGoogle Scholar
  7. Blilou, 1., Ocampo, J. A., and Garcia-Garrido, J. M., 1999, Resistance of pea roots to endomycorrhizal fungus or Rhizobium correlates with enhanced levels of endogenous salicylic acid, J. Exp. Bot. 50: 1663–1668.Google Scholar
  8. Blilou, I., Ocampo, J. A., and Garcia-Garrido, J. M., 2000a, Induction of catalase and ascorbate peroxidase activities in tobacco roots inoculated with arbuscular mycorrhizal Glomus mosseae, Mycol. Res. 104: 722–725.CrossRefGoogle Scholar
  9. Blilou, 1., Ocampo, J. A., and Garcia-Garrido, J. M., 20006, Induction of Ltp (lipid transfer protein) and Pal (phenylalanine ammonia-lyase) gene expression in rice roots colonized by the arbuscular mycorrhizal fungus Glomus mosseae, J. Exp. Bot. 51: 1969–1977.Google Scholar
  10. Bolanos-Vasquez, M. C., and Werner, D., 1997, Effect of Rhizobium tropici, R. etli, and R. leguminosarum by. phaseoli on nod gene-inducing flavonoids in root exudates of Phaseolus vulgaris, MPMI 10: 339–346.CrossRefGoogle Scholar
  11. Caetano-Anollés, G., and Gresshof, P. M., 1991, Plant genetic control ofnodulation, Ann. Rev. Microbiol. 45: 345–382.CrossRefGoogle Scholar
  12. Caron, M., Fortin J. A., and Richard, C., 1986, Effect of phosphorus concentration and Glomus intraradices on Fusarium crown and root rot of tomatoes, Phytopathol. 76: 942–946.CrossRefGoogle Scholar
  13. Chabot, S., Bel-Rhlid, R., Chênevert, R., and Piché, Y., 1992, Hyphal growth promotion in vitro of the VA mycorrhizal fungus, Gigaspora margarita Becker & Hall, by the activity of structurally specific flavonoids compounds under CO, enriched conditions, New Phylol. 122: 461–467.CrossRefGoogle Scholar
  14. Chakraborty, U., and Purkayastha, R. P., 1984, Role ofrhizobitoxine in protecting soybean roots from Macrophomina phaseolina infection, Can. J. Microbiol. 30: 285–289.CrossRefGoogle Scholar
  15. Chakraborty, U., and Chakraborty, B. N., 1989, Interaction of Rhizobium leguminosarum and Fusarium solani f sp. pisi on pea affecting disease development and phytoalexin production, Can. J. Bot. 67: 1698–1701.CrossRefGoogle Scholar
  16. Chaturvedi, C., and Singh, R., 1989, Response of chickpea (Cicer arietinum L.) to inoculation with Rhizobium and VA mycorrhiza, Proc. Natl. Acad. Sci. India Sect. B 59: 443–446.Google Scholar
  17. Cluett, H. C., and Boucher, D. H., 1983, Indirect mutualism in the legume-Rhizobium-mycorrhizal fungus interaction, Oecologia 59: 405–408.CrossRefGoogle Scholar
  18. Cordier, C., Gianinazzi, S., and Gianinazzi-Pearson, V., 1996, Colonization patterns of root tissues by Phytphthora nicotianae var. parasitica related to reduced disease in mycorrhizal tomato, Plant and Soil 185: 223–232.CrossRefGoogle Scholar
  19. Cordier, C., Pozo, M. J., Barea, J. M., Gianinazzi, S., and Gianinazzi-Pearson, V., 1998, Cell defense responses associated with localized and systemic resistance to Phytophthora parasitica induced in tomato by an arbuscular mycorrhizal fungus, MPMI 11: 1017–1028.CrossRefGoogle Scholar
  20. Daft, M. J., and EI-Giahmi, A. A., 1974, Effect of Endogone mycorrhiza on plant growth. VII. Influence of infection on the growth and nodulation in French bean (Phaseolus vulgaris), New Phytol. 73: 1139–1147.CrossRefGoogle Scholar
  21. Daft, M. J., and Hogarth, B. G., 1983, Competitive interactions of four species of Glomus on maize and onion, Trans. Br. mycol. Soc. 80: 339–345.CrossRefGoogle Scholar
  22. Dakora, F. D., Joseph, C. M., and Phillips, D. A., 1993, Alfalfa (Medicago saliva L.) root exudates contain isoflavonoids in the presence of Rhizobium meliloti, Plant Physiol. 101: 819–824.Google Scholar
  23. Dakora, F. D., and Phillips, D. A., 1996, Diverse functions of isoflavonoids in legumes transcend anti-microbial definitions of phytoalexins, Physiol. Mol. Plant Pathol. 49: 1–20.CrossRefGoogle Scholar
  24. Davis, R. M., and Menge, J. A., 1980, Influence of Glomus fasciculatus and soil phosphorus on Phytophthora root rot of citrus, Phytopathol 70: 447–452.CrossRefGoogle Scholar
  25. Dehne, H. W., 1982, Interactions between vesicular-arbuscular mycorrhizal fungi and plant pathogens, Phytopathol. 72: 1115–1119.Google Scholar
  26. Fester, T., Maier, W., and Strack, D., 1999, Accumulation of secondary compounds in barley and wheat roots in response to inoculation with arbuscular mycorrhizal fungi and co-inoculation with rhizosphere bacteria, Mycorrhiza 8: 241–246.CrossRefGoogle Scholar
  27. Feugey, L., Strullu, D. G., Poupard, P., and Simoneau, P., 1999, Induced defence responses limit Hartig net formation in ectomycorrhizal birch roots, New Phytol. 144: 541–547.CrossRefGoogle Scholar
  28. Fries, L. L., Pacovsky, R. S., Safir, G. R., and Siqueira, J. O., 1997, Plant growth and arbuscular mycorrhizal fungal colonization affected by exogenously applied phenolic compounds, J. Chem. Eco!. 23: 1755–1767.CrossRefGoogle Scholar
  29. Gaffney, T., Friedrich, L., Vernooij. B., Negrotto, D., Nye, G., Uknes, S., Ward, E., Kessmann, H., and Ryals, J., 1993, Requirement of salicylic acid for the induction of systemic required resistance, Science 261: 754–756.Google Scholar
  30. Gemma, L. N., and Koske, R. E., 1988, Pre-infection interactions between roots and the mycorrhizal fungus Gigaspora gigantea: chemotropism of germ-tubes and root growth response, Trans. Br. mycol. Soc. 91: 123–132.CrossRefGoogle Scholar
  31. Gianinazzi-Pearson, V., Branzanti, B., and Gianinazzi, S., 1989, In vitro enhancement of spore germination and early hyphal growth of a vesicular-arbuscular mycorrhizal fungus by host root exudates and plant flavonoids, Symbiosis 7: 243–255.Google Scholar
  32. Harley, J. L., and Harley, E. L., 1987, A check-list of mycorrhiza in the British flora, New Phytol. 105:1–102. Harrison, M. J., and Dixon, R. A., 1993, Isoflavonoid accumulation and expression of defense gene transcripts during the establishment of vesicular-arbuscular mycorrhizal associations in roots of Medicago truncatula. MPM16:643–654.Google Scholar
  33. Hepper, C. M., Azcon-Aguilar, C., Rosendahl, S., and Sen, R., 1988, Competition between three species of Glomus used as spatially separated introduced and indigenous mycorrhizal inocula for leek (Album porrum L.), New Phytol. 110: 207–215.CrossRefGoogle Scholar
  34. Hirsch, A. M., and Kapulnik, Y., 1998, Signal transduction pathways in mycorrhizal associations: Comparisons with the Rhizobium-legume symbiosis, Fung. Gen. Biol. 23: 205–212.CrossRefGoogle Scholar
  35. Higgins, V. J., 1978, The effect of some pterocarpanoid phytoalexins on germ tube elongation of Stemphylum botryosum, Phytopathol. 68: 339–345.CrossRefGoogle Scholar
  36. Hooker, J. E., Jaizme-Vega, M., and Atkinson, D., 1994, Biocontrol of plant pathogens using arbuscular mycorrhizal fungi, In: Impact of arbuscular mycorrhizas on sustainable agriculture and natural ecosystems, Gianinazzi, S., and Schuepp, H., eds., Birkhäuser Verlag, Basel, Switzerland, pp. 191–200.CrossRefGoogle Scholar
  37. Kawai, Y., and Yamamoto, Y., 1986, Increase in the formation and nitrogen fixation of soybean nodules by vesiculararbuscular mycorrhiza, Plant Cell Physiol. 27: 399–405.Google Scholar
  38. Koske, R. E., 1982, Evidence for a volatile attractant from plant roots affecting germ tubes of a VA mycorrhizal fungus, Trans. Br. mycol. Soc. 79: 305–310.CrossRefGoogle Scholar
  39. Koske, R. E., and Gemma, J. N., 1992, Fungal reactions to plants prior to mycorrhizal formation, In: Mycorrhizal functioning: An integrative plant fungal process, Allen, M. F., ed., Chapman and Hall, New York, USA pp. 3–27.Google Scholar
  40. Ludwig-Müller, J., 2000, Hormonal balance in plants during colonization by mycorrhizal fungi, In: Arbuscular Mycorrhizas: Physiology and Function, Kapulnik Y., and Douds, D. D., eds., Kluwer Academic Publishers, Dordrecht, The Netherlands, pp. 263–285.Google Scholar
  41. Maier, W., Peipp, H., Schmidt, J., Wray, V., and Strack, D., 1995, Levels ofa terpenoid glycoside (blumenin) and cell wall-bound phenolics in some cereal mycorrhizas, Plant Physiol. 109: 465–470.CrossRefGoogle Scholar
  42. Maier, W., Hammer, K., Dammann, U., Schulz, B., and Strack, D., 1997, Accumulation of sesquiterpenoid cyclohexenone derivatives induced by an arbuscular mycorrhizal fungus in members of the Poaceae, Planta 202: 36–42.CrossRefGoogle Scholar
  43. Maier, W., Schmidt, J., Wray, V., Walter, M. H., and Strack, D., 1999, The arbuscular mycorrhizal fungus, Glomus intraradices, induces the accumulation of cyclohexenone derivatives in tobacco roots, Planta 207: 620–623.CrossRefGoogle Scholar
  44. Maier, W., Schmidt, J., Nimtz, M., Wray, V., and Strack, D., 2000, Secondary products in mycorrhizal roots of tobacco and tomato, Phytochem. 54: 473–479.CrossRefGoogle Scholar
  45. Malamy, J., and Klessig, D. F., 1992, Salicylic acid and plant disease resistance, Plant J. 2: 643–654.CrossRefGoogle Scholar
  46. Meyer, J. R., and Linderman, R. G., 1986, Selective influence in populations ofrhizosphere or rhizoplane bacteria and actinomycetes by mycorrhizas formed by Glomus fasciculatum, Soil Biol. Biochem. 18: 191–196.CrossRefGoogle Scholar
  47. Miersch, O., and Wastemack, C., 2000, Octadecanoid and jasmonate signaling in tomato (Lycopersicon esculentum Mill.) leaves: Endogenous jasmonates do not induce jasmonate biosynthesis, Biol. Chem. 381: 715–722.CrossRefGoogle Scholar
  48. Morandi, D., 1996, Occurence of phytoalexins and phenolic compounds on endomycorrhizal interactions, and their potential role in biological control, Plant and Soil 185: 241–25 I.Google Scholar
  49. Norman, J. R., and Hooker, J. E., 2000, Sporulation of Phytophihorafragariae shows greater stimulation by exudates of non-mycorrhizal than by mycorrhizal strawberry roots, Mycol. Res. 104: 1069–1073.CrossRefGoogle Scholar
  50. Pacovsky, R. S., Fuller, G., Stafford, A. E., and Paul, E. A., 1986, Nutrient and growth interaction in soybeans colonized with Glomus fasciculatum and Rhizobium japonicum, Plant and Soil 92: 37–45.CrossRefGoogle Scholar
  51. Pearson, J. N., Abbott, L. K., and Jasper D. A., 1993, Mediation of competition between two colonizing VA mycorrhizal fungi by the host plant, New Phytol. 123: 93–98.CrossRefGoogle Scholar
  52. Pearson, J. N., Abbott, L. K., and Jasper, D. A., 1994, Phosporus, soluble carbohydrates and the competition between two arbuscular mycorrhizal fungi colonizing subterranean clover, New Phytol 127: 101–106.CrossRefGoogle Scholar
  53. Peipp, H., Maier, W., Schmidt, J., Wray, V., and Strack, D., 1997, Arbuscular mycorrhizal fungus-induced changes in the accumulation of secondary compounds in barley roots, Phytochem. 44: 581–587.CrossRefGoogle Scholar
  54. Perret, X., Staehelin, C., and Broughton, W. J., 2000, Molecular basis of symbiotic promiscuity, Microbiol. Mol. Biol. Rev. 64: 180–201.CrossRefGoogle Scholar
  55. Phillips, D. A., and Tsai, S. M., 1992, Flavonoids as plant signals to the rhizosphere microbes, Mycorrhiza 1: 55–58.CrossRefGoogle Scholar
  56. Pieterse, C. M. J., and van Loon, L. C., 1999, Salicylic acid-independent plant defense pathways, Trends in Plant Science 4: 52–58.CrossRefGoogle Scholar
  57. Pinior, A., Wyss, U., Piché, Y., and Vierheilig H., 1999, Plants colonized by AM fungi regulate further root colonization by AM fungi through altered root exudation, Can. J. Bot. 77: 891–897.Google Scholar
  58. Poulin, M.-J., Bel-Rhlid, R., Piché, Y., and Chénevert, R., 1993, Flavonoids released by carrot (Daucus carota) seedlings stimulate hyphal development of vesicular-arbuscular mycorrh izal fungi in the presence of optimal CO, enrichment, J Chem. Ecol. 19: 2317–2327.CrossRefGoogle Scholar
  59. Rosendahl, S., 1985, Interactions between the vesicular-arbuscular mycorrhizal fungus Glomus fasciculatum and Aphanomyces euteiches root rot of peas, Phytopathol. Z. 114: 31–40.CrossRefGoogle Scholar
  60. Recourt, K., Van Tunen, A. J., Mur, L. A., Van Brussel, A. A. N., Lugtenberg, B., and Kijne, J. W., 1992, Activation of flavonoid biosynthesis in roots of Vicia sativa subsp. nigra plants by inoculation with Rhizobium leguminosarunr biovar viciae, Plant Mol. Biol. 19: 411–420.CrossRefGoogle Scholar
  61. Schmidt, P. E., Broughton, W. J., and Werner, D., 1994, Nod factors of Bradyrhizobium japonicum and Rhizobium sp. NGR234 induce flavonoid accumulation in soybean root exudates, MPMI 7: 384–390.CrossRefGoogle Scholar
  62. Slezack, S., Dumas-Gaudot, E., Paynot, M., and Gianinazzi, S., 2000, Is a fully established arbuscular mycorrhizal symbiosis required for bioprotection of Pisum sativum roots against Aphanomyces euteiches? MPMI 13: 238241.Google Scholar
  63. Smith, S., and Read, D. J., 1997, Mycorrhizal Symbiosis, Academic Press, London, UK.Google Scholar
  64. St.-Arnaud, M., Hamel C., Vimard, B., Caron, M., and Fortin, J. A., 1997, Inhibition of Fusarium oxysporum f.sp. dianthi in the non-VAM species Dianthus caryophyllus by co-culture with Tagetes patula companion plants colonized by Glomus intraradices, Can. J. Bot. 75: 998–1005.CrossRefGoogle Scholar
  65. St.-Arnaud, M., Hamel, C., Caron, M., and Fortin, J. A., 1995, Endomycorhizes VA et sensibilité des plantes aux maladie: synthèse de la littérature et mécanismes d’interaction potentiels, In: La symbiose mycorhizienne, Fortin, J. A., Charest, C., and Piché, Y., eds., Editions Orbis, Frelighsburg, Québec, Canada pp. 51–87.Google Scholar
  66. Sticher, L, Mauch-Mani, B., and Métraux, J. P., 1997, Systemic acquired resistance, Ann. Rev. PhytopathoL 35: 235270.Google Scholar
  67. Suriyapperuma, S. P., and Koske, R. E., 1995, Attraction of germ tubes and germination of spores of the arbuscular mycorrhizal fungus Gigasporagigantea in the presence of roots of maize exposed to different concentrations of phosphorus, Mycologia 87: 772–778.CrossRefGoogle Scholar
  68. Tawaraya, K., Hashimoto, K., and Wagatsuma, T., 1998, Effect of root exudate fractions from P-deficient and P-sufficient onion plants on root colonisation by the arbuscular mycorrhizal fungus Gigaspora margarita, Mycorrhiza 8: 67–70.CrossRefGoogle Scholar
  69. Tu, J. C., 1978, Protection of soybean from severe Phytophthora root rot by Rhizobium, PhysioL Plant Pathol. 12: 233–240.CrossRefGoogle Scholar
  70. Van Etten, H. D., 1976, Antifungal activity ofpterocarpans and other selected isoflavonoids, Phytochem. 15: 655–659.CrossRefGoogle Scholar
  71. Vierheilig, H., Alt, M., Mohr, U., Boller, T., and Wiemken, A., 1994, Ethylene biosynthesis and activities ofchitinaseand 6–1,3-glucanase in the roots of host and non-host plants of vesicular-arbuscular mycorrhizal fungi afterinoculation with Glomus mosseae, J. Plant Physiol. 143: 337–343.CrossRefGoogle Scholar
  72. Vierheilig, H., Bago, B., Albrecht, C., Poulin, M.-P., and Piché, Y.. 1998a, Flavonoids and arbuscular-mycorrhizal fungi, In: Flavonoids in the Living System, Manthey, J. A., and Buslig, B. S., eds., Plenum Press, New York, USA, pp. 9–33.Google Scholar
  73. Vierheilig, H., Alt-Hug, M., Engel-Streitwolf, R., Mader, P., and Wiemken, A., 1998b, Studies on the attractional effect of root exudates on hyphal growth of an arbuscular mycorrhizal fungus in a soil compartment-membrane system, Plant and Soil 203: 137–144.CrossRefGoogle Scholar
  74. Vierheilig, H., Coughlan, A.P., Wyss, U., and Piché, Y., 1998c, Ink and vinegar, a simple staining technique for arbuscular-mycorrhizal fungi, Appl. Environ. Microbiol. 64: 5004–5007.Google Scholar
  75. Vierheilig, H., Bennett, R., Kiddie, G., Kaldorf, M., and Ludwig-Müller, J., 2000a, Differences in glucosinolate patterns and arbuscular mycorrhizal status of glucosinolate-containing plant species, New Phytol. 156: 343–352.CrossRefGoogle Scholar
  76. Vierheilig, H., Gagnon, H., Strack, D., and Maier, W., 20006, Accumulation ofcyclohexenone derivatives in barley, wheat and maize roots in response to inoculation with different arbuscular mycorrhizal fungi, Mycorrhiza 9: 29 1293.Google Scholar
  77. Vierheilig, H., Garcia-Garrido, J. M., Wyss, U., and Piché, Y., 2000c, Systemic suppression of mycorrhizal colonization of barley roots already colonized by AM fungi, Soil Biol. Biochem. 32: 589–595.CrossRefGoogle Scholar
  78. Vierheilig, H., Maier, W., Wyss, U., Samson, J., Strack, D., and Fiché, Y., 2000d, Cyclohexenone derivative-and phosphate-levels in split-root systems and their role in the systemic suppression ofmycorrhization in precolonized barley plants, J. Plant Physiol. 157: 593–599.CrossRefGoogle Scholar
  79. Vigo, C., Norman, J. R., and Hooker, J. E., 2000, Biocontrol of the pathogen Phytophthora parasitica by arbuscular mycorrhizal fungi is a consequence of effects on infection loci, Plant Pathol. 49: 509–514.CrossRefGoogle Scholar
  80. Volpin, H., Elkind, Y., Okon, Y., and Kapulnik, Y. A., 1994, vesicular-arbuscular mycorrhizal fungus (Glomus intraradix) induces a defense response in alfalfa roots, Plant Physiol. 104: 683–689.Google Scholar
  81. Weidenbörner, M., and Jha H. C., 1994, Structure-activity relationship among isoflavonoids with regard to their antifungal properties, Mycol. Res. 98: 1376–1378.CrossRefGoogle Scholar
  82. Wilson, J. M., 1984, Competition for infection between vesicular-arbuscular mycorrhizal fungi, New Phytol. 97: 427435.Google Scholar
  83. Wyman, J. G., and Van Etten, H. D., 1978, Antibacterial activity of selected isoflavonoids, Phytopathol. 68:583–589. Xie, Z-P., Staehelin, C., Vierheilig, H., Wiemken, A., Jabbouri, S., Broughton, W. J., Vögeli-Lange, R., and Boller, T., 1995, Rhizobial nodulation factors stimulate mycorrhizal colonization of nodulating and non nodulating soybeans, Plant Physiol 108: 1519–1525.Google Scholar
  84. Xie, Z-P., Müller, J., Wiemken, A., Broughton, W. J., and Boller, T., 1998, Nod factor and tri-iodobenzoic acid stimulate mycorrhizal colonization and affect carbohydrate partitioning in mycorrhizal roots of Lablab purpureus, New Phytol. 139: 361–366.CrossRefGoogle Scholar
  85. Xie, Z-P., Staehelin, C., Wiemken, A., Broughton, W. J., Müller, J., and Boller, T., 1999, Symbiosis-stimulated chitinase isoenzymes of soybean (Glycine max (L.) Merr.), J. Exp. Bot. 50: 327–333.Google Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Horst Vierheilig
    • 1
  • Yves Piché
    • 1
  1. 1.Centre de Recherche en Biologie Forestière (CRBF), Pavillon C.- E.- MarchandUniversité LavalCanada

Personalised recommendations