Advertisement

Beers: recent technological innovations in brewing

  • D. Iserentant

Abstract

The brewing industry is a traditional one: many brewers are using a technology that remained basically unchanged over a period of 100 years. New technological breakthroughs are seldom directly applied to the brewing process; most brewers are afraid that the change would harm either the quality or the image of their beer. In recent years, the situation has been changing: fusions and takeovers have created big brewing groups and increasing competition in a shrinking beer market has forced the brewer to be cost effective. Technological innovations are used now to increase the productivity, to save energy or to create new products.

Keywords

Continuous Fermentation Brewing Yeast Immobilize Yeast Brewing Process Main Fermentation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aisien, A.O. (1988) Sorghum: a suitable source for brewing beer? Brew. Dist. Int., 18(3), 20–22, 31.Google Scholar
  2. Aisien, A.O., Palmer, G.H. and Stark, J.R. (1986) The ultrastructure of germinating sorghum and millet grains. J. Inst. Brew., 92, 162–167.Google Scholar
  3. Aivasidis, A., Wandrey, Ch., Eils, H.G. and Katzke, M. (1991) Continuous fermentation of alcohol free beer with immobilized yeast in fluidized bed reactors. Proc. Eur. Brew. Conv., 23rd congress, Lisbon, pp. 569-584.Google Scholar
  4. Aniche, G.N. and Palmer, G.H. (1990) Development of amylolytic activities in sorghum and barley malt. J. Inst. Brew., 96, 377–379.CrossRefGoogle Scholar
  5. Ault, R.G., Hampton, A.N., Newton, R. and Roberts, R.H. (1969) Biological and biochemical aspects of tower fermentation. J. Inst. Brew., 75, 260–277.Google Scholar
  6. Barney, M.C., Jansen, G.P. and Helbert, J.R. (1980) Use of spheroplast fusion and genetic transformation to introduce dextrin utilization into Saccharomyces uvarum. J. Am. Soc. Brew. Chem., 38, 1–5.Google Scholar
  7. Briggs, D.E., Wadison, A., Statham, R. and Taylor, J.F. (1986) The use of extruded barley, wheat and maize as adjuncts in mashing. J. Inst. Brew., 92, 468–474.Google Scholar
  8. Brookes, P.A. and Philliskirk, G. (1987) Brewing properties of micronised-cereals. Proc. Eur. Brew. Conv., 21st Congress, Madrid, pp. 337-344.Google Scholar
  9. Cantwell, B., Brazil, G., Hurley, J. and McDonnel, D. (1985) Expression of the gene for the endo-beta-1, 3-1, 4-glucanase from Bacillus subtilis in Saccharomyces cerevisiae. Proc. Eur. Brew. Conv., 20th Congress, Helsinki, pp. 259-266.Google Scholar
  10. Chantrell, N.S. (1983) Practical and analytical results obtained from continuous high temperature wort boiling. Proc. Eur. Brew. Conv., 19th Congress, London, pp. 89–96.Google Scholar
  11. Clark, D.C. Wilde, P.J. and Wilson, D.R. (1991) The effect of pre-isomerised hop extract on the properties of model protein stabilized foams. J. Inst. Brew., 97, 169–172.CrossRefGoogle Scholar
  12. Cop, J., Dyon, D., Iserentant, D. and Masschelein, C.A. (1989) Reactor design optimization with a view to the improvement of amino acid utilization and flavour development in calcium entrapped brewing yeast fermentations. Proc. Eur. Brew Conv., 22nd Congress, Zurich, pp. 315–322.Google Scholar
  13. Crumplen, R., D’Amore, T., Slaughter, C. and Stewart, G. (1993) Novel differences between ale and lager strains. Proc. Eur. Brew. Conv., 24th Congress, Oslo, pp. 267–274.Google Scholar
  14. Curin, J., Pardanova, B., Polednikova, M., Sedova, H. and Kahler, M. (1987) Beer production with immobilized yeast. Proc. Eur. Brew. Conv., 21st Congress, Madrid, pp. 433–440.Google Scholar
  15. Dale, C.J., Young, T.W. and Makinda, A. (1989) Extruded sorghum as brewing raw material. J. Inst. Brew., 95, 157–164.Google Scholar
  16. Davies, A.W. (1988) Continuous fermentation — 30 years on. Inst. Brew., Aust. N. Z. Sect. Proc. of the 20th Conv., Brisbane, pp. 159-165.Google Scholar
  17. Delcour, J.A., Hennebert, M.M.E., Vancraenenbroeck, R. and Moerman, E. (1989) Unmalted cereal products for beer brewing. Part I. The use of high percentages of extruded or regular corn starch and sorghum. J. Inst. Brew., 95, 271–276.Google Scholar
  18. Dillemans, M., Goossens, E., Goffin, O. and Masschelein, C.A. (1987) The amplification effect of the IL V5 gene on the production of vicinal diketones in Saccharomyces cerevisiae The amplification effect of the IL V5 gene on the production of vicinal diketones in Saccharomyces cerevisiae. J. Am. Soc. Brew. Chem., 45, 81–85.Google Scholar
  19. Donhauser, S., Glas, K. and Müller, O. (1991) Verhalten von Bierinhaltstoffen bei der Herstellung von alkoholreduzierten Bieren mittels Dialyse. Brauwelt, 131, 548–556.Google Scholar
  20. Dufour, J.P. and Mélotte, L. (1992) Sorghum malts for the production of a lager beer. J. Am. Soc. Brew. Chem., 50, 110–119.Google Scholar
  21. Dunbar, J., Campbell, S.L., Banks, D.J. and Warren, D.R. (1988) Metabolic aspects of a commercial continuous fermentation system. Inst. Brew., Aust. N. Z. Sect., Proc. 20th Conv., Brisbane, pp. 151-158.Google Scholar
  22. Emeis, C.C. (1971) A new hybrid yeast for the fermentation of wort dextrins. Am. Soc. Brew. Chem., Annu. Proc. pp. 58-62.Google Scholar
  23. Enari, T.M., Knowles, J., Lehtinen, U., Nikkola, M., Penttilä, M., Suihko, M.L., Home, S. and Vipola, A. (1987) Glucanolytic brewer’s yeast. Proc. Eur. Brew. Conv., 21st Congress, Madrid, pp. 529–536.Google Scholar
  24. Eyben, D. Hermia, J., Meurens, J., Rahier, G. and Tigel, R. (1989) Industrial results of a new wort filter. Proc. Eur. Brew. Cony., 22nd Congress, Zurich, pp. 275-281.Google Scholar
  25. Fukui, N., Takahashi, T., Nakagawara, S., Miyajima, K., Koga, K., Nagami, K. and Kumada, J. (1985) Züchtung einer neuen Hefe mittels Zellfusion. Brauwelt, 125, 1252–1257.Google Scholar
  26. Godtfredsen, S.E., Ottesen, M. and Svensson, B. (1981) Application of immobilized yeast and yeast coimmobilized with amyloglucosidase in the brewing process. Proc. Eur. Brew. Conv., 18th Congress, Copenhagen, pp. 505-511.Google Scholar
  27. Gonzales del Cueto, A. (1992) A review of the US patents related to the preparation of low calorie and low alcohol content beer. Brewers’ Digest, 67(6), 16–19.Google Scholar
  28. Goossens, E., Debourg, A., Villanueba, K.D. and Masschelein, C.A. (1991) Decreased diacetyl production by site directed integration of the ilv5 gene into chromosome XIII of Saccharomyces cerevisiae. Proc. Eur. Brew. Conv., 23rd Congress, Lisbon, pp. 289-296.Google Scholar
  29. Goossens, E., Debourg, A., Villanueba, K.D. and Masschelein, C.A. (1993) Decreased diacetyl production in lager brewing yeast by integration of the IL V5 gene. Proc. Eur. Brew. Conv., 24th Congress, Oslo, pp. 251-258.Google Scholar
  30. Grönqvist, A., Pajunen, E. and Ranta, B. (1989) Secondary fermentation with immobilized yeast — industrial scale. Proc. Eur. Brew. Conv., 22nd Congress, Zurich, pp. 339-346.Google Scholar
  31. Hammond, R.M. and Eckersley, K.W. (1984) Fermentation properties of brewing yeast with killer character. J. Inst. Brew., 90, 167–177.Google Scholar
  32. Hancock, J.C. (1985) Vapour recompression applied to wort boiling. Brewers Guardian, 114(5), 51–56.Google Scholar
  33. Hayes, P. (1991) Malting barley improvement. MBAA Tech. Quart., 28, 4–7.Google Scholar
  34. Hayes, S.A., Power, J. and Ryder, D.S. (1991) Immobilized cell technology for brewing: a progress report. Part one: procedural and configurational options. Brewers’ Digest, 66(9), 14–22, 35.Google Scholar
  35. Hermia, J., Hupe, J., Meurens, J., Rahier, G. and Tigel, R. (1987) Recherches récentes dans la filtration du moût sur filtre presse. Proc. Eur. Brew. Conv., 21st Congress, Madrid, p. 345-352.Google Scholar
  36. Herrman, H. (1985) Huppman low-pressure boiling in practice. Brew. Dist. Int., 15(3), 32–35, 45.Google Scholar
  37. Hinchliffe, E. and Box, W.G. (1985) Beer enzymes and genes: the application of a concerted approach to beta-glucan degradation. Proc. Eur. Brew. Conv., 20th Congress, Helsinki, pp. 267-274.Google Scholar
  38. Hockney, R.C. and Freeman, R.F. (1979) Construction of a polysaccharide-degrading brewing yeast protoplast fusion. Proc. 5th Inter. Protoplast Symp — Adv. Protoplast Res., pp. 139-143.Google Scholar
  39. Inoue, T., Shimizu, F. and Sone, H. (1989) Brewing performance of a genetically transformed yeast with acetolactate decarboxylase activity. MBAA Tech. Quart., 26, 47–50.Google Scholar
  40. Iserentant, D. (1989) Genetically manipulated yeasts: methods, facts and future. Louvain Brew. Lett., 2(3/4), 3–15.Google Scholar
  41. Kavanagh, T.E., Clarke, B. J., Gu, P.S., Miles, M. and Nicholson, B.M. (1991) Volatile flavor compounds in low alcohol beer. MBAA Tech. Quart., 28, 111–118.Google Scholar
  42. Klein-Carl, G. and Reichert, R. (1991) Energy savings through use of low pressure steam re-compression in a brew kettle with interior cooker. MBAA Tech. Quart., 28, 142–144.Google Scholar
  43. Kronlöf, J. and Linko, M. (1992) Production of beer using immobilized yeast encoding alfa-acetolactate decarboxylase. J. Inst. Brew., 98, 479–491.CrossRefGoogle Scholar
  44. Lancashire, W.E. and Wilde, R. J. (1987) Secretion of foreign proteins by brewing yeast. Proc. Eur. Brew. Conv., 21st Congress, Madrid, pp. 513-520.Google Scholar
  45. Lancashire, W.E., Carter, A.T., Howard, J.J. and Wilde, R.J. (1989) Superattenuating brewing yeast. Proc. Eur. Brew. Conv. 22nd Congress, Zurich, pp. 491-498.Google Scholar
  46. Lengnes, J. (1990) Les procédés de fabrication des bières partiellement ou totallement désalcoolisées: incidences sur la qualité. Cerevisia Biotechnol., 14, 85–94.Google Scholar
  47. Lenz, B. (1982) Low-pressure wort boiling with heat storage. Brew. Dist. Int., 12(7), 27–30, 33.Google Scholar
  48. Linko, M. and Kronlöf, J. (1991) Main fermentation with immobilized yeast. Proc. Eur. Brew. Conv., 23rd Congress, Lisbon, pp. 353-360.Google Scholar
  49. Malleshi, N.G. and Desikachar, H.S.R. (1986) Influence of malting conditions on quality of finger millet malt. J. Inst. Brew., 92, 81–83.Google Scholar
  50. Masschelein, C.A. (1987) New fermentation methods. Proc. Eur. Brew. Conv., 21st Congress, Madrid, pp. 209-220.Google Scholar
  51. Maule, D.R. (1986) A century of fermenter design. J. Inst. Brew., 92, 137–145.Google Scholar
  52. Meaden, P.G. and Tubb, R.S. (1985) A plasmid vector system for the genetic manipulation of brewing strains. Proc. Eur. Brew. Conv., 20th Congress, Helsinki, pp. 219-226.Google Scholar
  53. Meersman, E. (1992) Gebruik van de mono-layer drager in de brouwerij. Symp. Trends in de brouwerij’ KIHO Belgium, April 24th.Google Scholar
  54. Melis, M. and Eyben, D. (1992) The mash filter 2001: latest industrial results. MBAA Tech. Quart., 29, 18–19.Google Scholar
  55. Morrall, P., Boyd, H.K., Taylor, J.R.N. and van der Wal, W. (1986) Effect of germination time, temperature and moisture on malting of sorghum. J. Inst. Brew., 92, 439–445.Google Scholar
  56. Muller, R. (1990) The production of low alcohol and alcohol free beers by limited fermentation. Ferment, 3, 224–230.Google Scholar
  57. Nakanishi, K., Onaka, T., Inoue, T. and Kubo, S. (1985) A new immobilized reactor system for rapid production of beer. Proc. Eur. Brew. Conv., 20th Congress, Helsinki, pp. 331-338.Google Scholar
  58. Nakanishi, K., Onaka, T. and Inoue, T. (1986) A new immobilized reactor system for rapid production of beer. Rep. Res. Lab. Kirin Brew. Co., 29, 13–16.Google Scholar
  59. Narziss, L. and Hellich, P. (1971) Ein Beitrag zur wesentlichen Beschleunigung der Gärung und Reifung des Bieres, Brauwelt, 111, 1491–1500.Google Scholar
  60. Nout, M.J.R. and Davies, B.J. (1982) Malting characteristics of finger millet, sorghum and barley. J. Inst. Brew., 88, 157–163.Google Scholar
  61. Okon, E.V. and Uwaifo, H.O. (1985) Evaluation of malting sorghums. I. The malting potential of Nigerian varieties of sorghum. Brew. Dig., 60(12), 24–29.Google Scholar
  62. Olatunji, O., Jibogun, A.C., Anibaba, T.S., Oliyide, V.O., Ozumba, A.U. Oniwinde, A.B. and Koleosi, O. (1993) Effect of different mashing procedures on the quality of sorghum beer. J. Am. Soc. Brew. Chem., 51, 67–70.Google Scholar
  63. Omrod, J.H.L. and Sharpe, F.R. (1989) Brewing trials using extrusion cooked hops. Proc. Eur. Brew. Conv., 22nd Congress, Zurich, pp. 251-258.Google Scholar
  64. Onaka, T., Nakanishi, K., Inoue, T. and Kubo, S. (1985) Beer brewing with immobilized yeast. Bio/Technology, 3, 467–470.CrossRefGoogle Scholar
  65. Pajunen, E., Mäkinen, V. and Gisler, R. (1987) secondary fermentation with immobilized yeast. Proc. Eur. Brew. Conv., 21st Congress, Madrid, pp. 441-448.Google Scholar
  66. Pajunen, E. Grönqvist, A. and Ranta, B. (1991) Immobilized yeast reactor application in continuous secondary fermentation in industrial scale operation. Proc. Eur. Brew. Conv., 23rd Congress, Lisbon, pp. 361-368.Google Scholar
  67. Palmer, G.H. (1992) Cereal science and malting technology: the future. J. Am. Soc. Brew. Chem., 50, 121–130.Google Scholar
  68. Pardanova, B., Polednikova, M., Sedova, H., Kahler, M. and Ludvik, J. (1982) Biokatalysator für die Bierherstellung. Brauwissenschaft, 35, 254–258.Google Scholar
  69. Pedersen, M.B. (1983) DNA sequence polymorphisms in the genus Saccharomyces. I. Comparison of the HIS4 and ribosomal RNA genes in lager strains, ale strains and various species. Carlsberg Res. Commun., 48, 485–503.CrossRefGoogle Scholar
  70. Pedersen, M.B. (1985) DNA sequence polymorphisms in the genus Saccharomyces.Google Scholar
  71. II. Analysis of the genes RDN1, HIS4, LEU2, and Ty transposable elements in Carlsberg, Tuborg and 22 Bavarian brewing strains. Carslberg Res. Commun., 50, 263-272.Google Scholar
  72. Pedersen, M.B. (1986a) DNA sequence polymorphisms in the genus Saccharomyces. III. Restriction endonuclease fragment patterns of chromosomal regions in brewing and other yeast strains. Carlsberg Res. Commun., 51, 163–183.CrossRefGoogle Scholar
  73. Pedersen, M.B. (1986b) DNA sequence polymorphisms in the genus Saccharomyces. IV. Homologous chromosomes III of Saccharomyces bay anus, Saccharomyces carlsbergensis and Saccharomyces uvarum. Carlsberg Res. Commun., 51, 185–202.CrossRefGoogle Scholar
  74. Penttilä, M., Suikho, M.L., Blomqvist, K., Nikkola, M., Knowles, J.K.C. and Enari, T.M. (1988) Construction of brewer’s yeast strains expressing bacterial alpha-ALDC genes: a revolution in the brewing industry. Abst. 14th Int. Con. Yeast Genet. Mol. Espoo. Yeast, 4 (spec. issue) S473.Google Scholar
  75. Pittner, H., Back, W., Swinkels, W., Meersman, E., van Dieren, B. and Lommi, H. (1993) continuous production of acidified wort for alcohol free beer using immobilized lactic acid bacteria. Proc. Eur. Brew. Conv., 24th Congress, Oslo, pp. 323-329.Google Scholar
  76. Pitz, W.J. (1990) An Analysis of malting research. J. Am. Soc. Brew. Chem., 48, 33–44.Google Scholar
  77. Portno, A.D. (1978) Continuous fermentation in the brewing industry — the future outlook. EBC fermentation and Storage Symposium, Monograph V, pp. 145-154.Google Scholar
  78. Regan, J. (1990) Production of alcohol-free and low alcohol-beers by vacuum distillation and dialysis. Ferment, 3, 235–237.Google Scholar
  79. Röcken, W. (1984) Übertragung des Killerplasmids von einer Killerhefe auf eine untergärige Bierhefe durch Protoplastenfusion. Monatschr. Brauwiss., 37, 384–389.Google Scholar
  80. Sakai, K., Fukui, S., Yabuuchi, S., Aoyagi, S. and Tsumura, Y. (1988) Expression of the Saccharomyces diastaticus STA1 gene in brewing yeast. J. Am. Soc. Brew. Chem., 47, 87–91.Google Scholar
  81. Sasaki, T., Watari, J., Kogho, M., Nishikawa, N. and Matsui, Y. (1984) Breeding of a brewer’s yeast possessing anticontaminant properties. J. Am. Soc. Brew. Chem., 42, 164–166.Google Scholar
  82. Schur, F. (1983) Ein neues Verfahren zur Herstellung von alkohol-freien Bier. Proc. Eur. Brew. Conv., 19th Congress, London, pp. 353-360.Google Scholar
  83. Simpson, W.J. and Hammond, J.R.M. (1991) Antibacterial action of hop resin material. Proc. Eur. Brew. Conv., 23rd Congress, Lisbon, pp. 185-192.Google Scholar
  84. Singh, T., Hardinger, K. and Bains, G.S. (1988) Malting of finger millet: factors influencing alfa-amylase activity and wort characteristics. J. Am. Soc. Brew. Chem., 46, 1–5.Google Scholar
  85. Smith, N.A. and Smith, P. (1993) Antibacterial activity of hop bitter resins derived from recovered hopped worts. J. Inst. Brew., 99, 43–48.CrossRefGoogle Scholar
  86. Sone, H., Kondo, K., Fuji, T., Shimuzu, F., Tanaka, J. and Inoue, T. (1987) Fermentation properties of brewer’s yeast having alfa-acetolactate decarboxylase gene. Proc. Eur. Brew. Conv., 21st Congress, Madrid, pp. 545-552.Google Scholar
  87. South, J.B. (1992) Improvements in micronised wheat production. MBAA Tech. Quart., 29, 20–23.Google Scholar
  88. Stein, W. (1993) Dealcoholization of beer. MBAA Tech. Quart., 30, 54–57.Google Scholar
  89. Strasser, A., Martens, F.B. and Hollenberg, C.P. (1988) Amylolytic enzymes producing microorganisms constructed by recombinant DNA technology and their use for fermentation processes. Eur. Patent Application, 0 260 404.Google Scholar
  90. Suikho, M.L., Penttilä, M., Sone, H., Home, S., Blomqvist, K., Tanake, J., Inoue, T. and Knowles, J. (1989) Pilot brewing with alfa-acetolactate decarboxylase active yeast. Proc. Eur. Brew. Conv., 22nd congress, Zurich, pp. 483-49.Google Scholar
  91. Taki, S., Tsubota, Y. and Murukaini, M. (1987) Application of screw type vapor recompression to wort boiling process. MBAA Tech. Quart., 24, 61–65.Google Scholar
  92. Taylor, J.R.N. (1992) Mashing with malted grain sorghum. J. Am. Soc. Brew. Chem., 50, 13–18.Google Scholar
  93. Vakeria, D. and Hinchliffe, E. (1989) Amylolytic brewing yeasts: their commercial and legislative acceptability. Proc. Eur. Brew. Conv., 22nd Congress, Zurich, pp. 475-482.Google Scholar
  94. Van de Spiegle, K., Goossens, L., Neesen, K. and Iserentant, D. (1990) Schwanniomyces alfa-amylase production by transformed brewing strains (abstract). EBC, Microbiol. Group Bull., p. 242.Google Scholar
  95. Van de Winkel, L., van Beveren, P.C. and Masschelein, C.A. (1991) The application of an immobilized yeast loop reactor to the continuous production of alcohol free beer. Proc. Eur. Brew. Conv., 23rd Congress, Lisbon, pp. 577-584.Google Scholar
  96. Van de Winkel, L., van Beveren, P.C., Borremans, E., Goossens, E. and Masschelein, C.A. (1993) High performance immobilized yeast reactor design for continuous beer fermentation. Proc. Eur. Brew. Conv., 24th Congress, Oslo, pp. 307-314.Google Scholar
  97. Van Waesberghe, J.W.M. (1979) Mash filtration by the Nordon HP-filter press, Brew. Dist. Int., 9(9), 54–56.Google Scholar
  98. Villanueba, K.D., Goossens, E. and Masschelein, C.A. (1990) Sub-threshold vicinal diketone levels in lager brewing yeast fermentation by means of ILV5 amplification. J. Am. Soc. Brew. Chem., 48, 111–114.Google Scholar
  99. Von Hodenberg, G.W. (1991) Die Herstellung von alkoholfreien Bieren mittels Umkehrosmose. Brauwelt, 131, 565–569.Google Scholar
  100. Westwood, K.T. and Crescenzi, A.M. (1989) Extrusion cooking of hops Proc. Eur. Brew. Conv., 22nd-Congress, Zurich, pp. 259-266.Google Scholar
  101. White, F. and Portno, A. (1978) Continuous fermentation by immobilized brewers yeast. J. Inst. Brew., 84, 228–230.Google Scholar
  102. Yarrow, D. (1984) in The Yeasts, a Taxonomic Study, (ed.) Kreger-van Rij, N.J.W., Elsevier, Amsterdam, pp. 379–395.Google Scholar
  103. Young, T.W. (1981) The genetic manipulation of killer character into brewing yeast. J. Inst. Brew., 87, 292–295.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1995

Authors and Affiliations

  • D. Iserentant

There are no affiliations available

Personalised recommendations