Advertisement

Phase Transfer Extraction of Mercury

  • D. Max Roundhill
Chapter
Part of the Modern Inorganic Chemistry book series (MICE)

Abstract

Although many of the heavy metals of the late and post-transition series behave similarly in terms of their extraction properties, mercury is of sufficient importance that we consider it alone. This importance results from the early recognition of the toxicological problems that are caused by mercury, and by the set of environmental problems that are posed by the unique chemistry of the element. Among the chemical properties of mercury that must be considered when addressing its environmental control are the volatility of the element itself with its potential to be carried airborne for considerable distances, the presence of a univalent oxidation state which forms complexes with the mercury in a bimetallic structure Hg2(I), and its ready methylation to give water soluble methylmercury(II) complexes, thereby returning the deposited metal from river and lake bed residues back into the food chain. Nevertheless, the chemistry of mercury does have similarities with those of other heavy metal ions, and throughout this chapter we will compare and contrast the extraction properties of mercury with those exhibited by other metals.

Keywords

Supercritical Carbon Dioxide Mercury Level Elemental Mercury Sulfur Donor Metal Picrate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. J. Craig in Organometallic Compounds in the Environment,P. J. Craig, ed., Wiley, New York, N. Y., 1986, chapter 2.Google Scholar
  2. 2.
    W. F. Fitzgerald, D. R. Engstrom, R. P. Mason, E. A. Nater, Eviron. Sci. Technol., 1998, 32, 1.CrossRefGoogle Scholar
  3. 3.
    K. A. Larson, J. M. Wiencek, Ind. Eng. Chem. Res., 1993, 32, 2854.CrossRefGoogle Scholar
  4. 4.
    J. Strzelbicki, W. Charewicz, J. Beger, L. Hinz, Can. J. Chem., 1988, 66, 1965.Google Scholar
  5. 5.
    J. Strzelbicki, W. Charewicz, J. Beger, L. Hinz, Can. J. Chem., 1988, 66, 2640.Google Scholar
  6. 6.
    F. L. Moore, Environ. Sci. Technol., 1972, 6, 525.Google Scholar
  7. 7.
    S. De Moraes, A. Abrao, Anal. Chem., 1974, 46, 1812.Google Scholar
  8. 8.
    E. M. Moyers, J. S. Fritz, Anal. Chem., 1976, 48, 1117.Google Scholar
  9. 9.
    R. B. Little, C. Burda, S. Link, S. Logunov, M. A. EI-Sayed, J. Phys. Chem., 1998, 102, 6581.CrossRefGoogle Scholar
  10. 10.
    J. Wisniak, G. Schorr, D. Zacovskry, S. Belfer, Ind. Eng. Chem. Res., 1990, 29, 1907.CrossRefGoogle Scholar
  11. 11.
    G. Alberti, J. Chromatogr., 1967, 31, 177.CrossRefGoogle Scholar
  12. 12.
    M. Tsubouchi, Anal. Chem., 1970, 42, 1087.CrossRefGoogle Scholar
  13. 13.
    F. Sinner, M. R. Buchmeiser, R. Tessadri, M. Mupa, K. Wurst, G. K. Bonn, J. Ant Chem. Soc., 1998, 120, 2790.Google Scholar
  14. 14.
    C. Y. Liu, M. J. Chen, T. J. Chai, J. Chromatogr., 1991, 555, 291.CrossRefGoogle Scholar
  15. 15.
    C. M. Wai, S. Wang, J.-J. Yu, Anal. Chem., 1996, 68, 3516.CrossRefGoogle Scholar
  16. 16.
    S. Wang, C. M. Wai, Environ. Sci. Technol., 1996, 30, 3111.CrossRefGoogle Scholar
  17. 17.
    A. Yazdi, E. J. Beckman, Mater. Res. Soc. Symp. Proc., 1994, 344, 211.CrossRefGoogle Scholar
  18. 18.
    A. Wyttenbach, S. Bajo, Heiv. Chim. Acta., 1973, 56, 1198.CrossRefGoogle Scholar
  19. 19.
    S. J. Yeh, J. M. Lo, L. H. Shen, Anal. Chem., 1980, 52, 528.CrossRefGoogle Scholar
  20. 20.
    H. Irth, G. J. De Jong, V. A. Th. Brinkman, R. W. Frei, Anal. Chem., 1987, 59, 98.CrossRefGoogle Scholar
  21. 21.
    W. Langseth, J. Chromatogr., 1988, 438, 414.CrossRefGoogle Scholar
  22. 22.
    J.-M. Lo, J.-D. Lee, Anal. Chem., 1994, 66, 1242.CrossRefGoogle Scholar
  23. 23.
    A. Chow, D. Buksak, Can. J. Chem., 1975, 53, 1373.CrossRefGoogle Scholar
  24. 24.
    R. Litman, E. T. Williams, H. L. Finston, Anal. Chem., 1977, 49, 983.CrossRefGoogle Scholar
  25. 25.
    R. J. Baltisberger, C. L. Knudson, Anal. Chem., 1975, 47, 1402.CrossRefGoogle Scholar
  26. 26.
    P. K. Dorhout, S. H. Strauss, ACS Sympos. Ser., 1999, 727, 53.Google Scholar
  27. 27.
    K. A. Larson, J. M. Wiencek, ACS Sympos. Ser., 1994, 554, 124.CrossRefGoogle Scholar
  28. 28.
    M. Aguda, A. Rios, M. Valcarcel, Anal. Chem., 1993, 65, 2941.Google Scholar
  29. 29.
    M. D. Morris, L. R. Whitlock, Anal. Chem., 1967, 39, 1180.Google Scholar
  30. 30.
    P. Jones, S. Hardy, J. Chromatogr., 1997, 765, 345.Google Scholar
  31. 31.
    C. Sarzanini, G. Sacchero, M. Aceto, O. Abollino, E. Mentasti, J. Chromatogr., 1992, 626, 151.CrossRefGoogle Scholar
  32. 32.
    S. Tanaka, T. Kaneta, H. Yoshida, J. Chromatogr., 1988, 447, 383.Google Scholar
  33. 33.
    M. Yanagisawa, H. Suzuki, K. Kitagawa, S. Tsuge, Spectrochim. Acta, Part B, 1983, 38B, 1143.Google Scholar
  34. 34.
    F. W. Wilshire, J. P. Lambert, F. E. Butler, Anal. Chem., 1975, 47, 2399.Google Scholar
  35. 35.
    D. T. Gjerde, J. S. Fritz, J. Chromatogr., 1980, 188, 391.CrossRefGoogle Scholar
  36. 36.
    T. Braun, S. Palagyi, Anal. Chem., 1979, 51, 1697.CrossRefGoogle Scholar
  37. 37.
    L. Legradi, J. Chromatogr., 1974, 102, 319.CrossRefGoogle Scholar
  38. 38.
    V. Taglia, J. Chromatogr., 1973, 79, 380.CrossRefGoogle Scholar
  39. 39.
    Z. Masoomi, D. T. Haworth, J. Chromatogr., 1970, 48, 581.CrossRefGoogle Scholar
  40. 40.
    M. J. Zetimeisl, D. T. Haworth, J. Chromatogr., 1967, 30, 637.CrossRefGoogle Scholar
  41. 41.
    W. Haerdi, E. Gorgia, N. Lakhova, Hely. Chim. Acta., 1971, 54, 1497.CrossRefGoogle Scholar
  42. 42.
    M. Qureshi, I. Akhtar, K. N. Mathur, Anal. Chem., 1967, 39, 1766.CrossRefGoogle Scholar
  43. 43.
    M. Qureshi, V. Sharma, R. C. Kaushik, T. Khan, J. Chromatogr., 1976, 128, 149.CrossRefGoogle Scholar
  44. 44.
    H. Sakamoto, S. Ito, M. Otomo, Chem. Lett., 1995, 37.Google Scholar
  45. 45.
    S. Wang, S. Elshani, C. M. Wai, Anal. Chem., 1995, 67, 919.CrossRefGoogle Scholar
  46. 46.
    R. M. Izatt, 1. S. Bradshaw, S. A. Nielson, J. D. Lamb, J. J. Christensen, D. Sen, Chem. Rev., 1985, 85, 271.CrossRefGoogle Scholar
  47. 47.
    G. Wu, W. Jiang, J. D. Lamb, J. S. Bradshaw, R. M. Izatt, J. Am. Chem. Soc., 1991, 113, 6538.CrossRefGoogle Scholar
  48. 48.
    T. F. Baumann, J. G. Reynolds, G. A. Fox, Abstr. 214th Natl. ACS Meeting,Las Vegas, Nev., Sep 1997, ENVR 117.Google Scholar
  49. 49.
    T. Kumagai, S. Akabori, Chem. Lett., 1989, 1667.Google Scholar
  50. 50.
    R. M. Izatt, R. L. Bruening, W. Geng, M. H. Cho, J. J. Christensen, Anal. Chem., 1987, 59, 2405.CrossRefGoogle Scholar
  51. 51.
    R. M. Izatt, G. C. Lind, R. L. Bruening, P. Huszthy, C. W. McDaniel, J. S. Bradshaw, J. J. Christensen, Anal. Chem., 1988, 60, 1694.CrossRefGoogle Scholar
  52. 52.
    S. Wang, S. Elshani, C. M. Wai, Anal. Chem., 1995, 67, 919.Google Scholar
  53. 53.
    R. M. Izatt, R. L. Bruening, M. L. Bruening, B. J. Tarbet, K. E. Krakowiak, J. S. Bradshaw, J. J. Christensen, Anal. Chem., 1988, 60, 1825.CrossRefGoogle Scholar
  54. 54.
    B. Vaidya, J. Zak, G. J. Bastiaans, M. D. Porter, J. L. Hallman, N. A. R. Nabulski, M. D. Utterback, B. Strzelbicka, R. A. Bartsch, Anal. Chem., 1995, 67, 4104.CrossRefGoogle Scholar
  55. 55.
    K. S. Hui, B. A. Davis, A. A. Boulton, J. Chromatogr., 1975, 115, 581.CrossRefGoogle Scholar
  56. 56.
    F. Hamada, T. Fukugaki, K. Murai, G. W. Orr, J. L. Atwood, J. Incl. Phenom. Mol. Recogn. in Chem., 1991, 10, 57.CrossRefGoogle Scholar
  57. 57.
    A. T. Yordanov, J. T. Mague, D. M. Roundhill, Inorg. Chem., 1995, 35, 5084.CrossRefGoogle Scholar
  58. 58.
    A. T. Yordanov, D. M. Roundhill, J. T. Mague, Inorg. Chim Acta., 1996, 250, 295.CrossRefGoogle Scholar
  59. 59.
    A. T. Yordanov, D. M. Roundhill, New J. Chem., 1996, 20, 447.Google Scholar
  60. 60.
    A. T. Yordanov, B. R. Whittlesey, D. M. Roundhill, Supramol. Chem., 1998, 9, 13.CrossRefGoogle Scholar
  61. 61.
    A. T. Yordanov, B. R. Whittlesey, D. M. Roundhill, Inorg. Chem., 1998, 37, 3526.CrossRefGoogle Scholar
  62. 62.
    A. T. Yordanov, D. M. Roundhill, Inorg. Chim. Acta., 1998, 270, 216.CrossRefGoogle Scholar
  63. 63.
    A. T. Yordanov, B. R. Whittlesey, D. M. Roundhill, Inorg. Chem., 1998, 37, 3526.CrossRefGoogle Scholar
  64. 64.
    A. T. Yordanov, D. M. Roundhill, Inorg. Chim. Acta., 1998, 270, 216.CrossRefGoogle Scholar
  65. 65.
    A. T. Yordanov, O. M. Falana, H. F. Koch, D. M. Roundhill, Inorg. Chem., 1997, 36, 6468.CrossRefGoogle Scholar
  66. 66.
    E. Nomura, H. Taniguchi, S. Tamura, Chem. Lett., 1989, 1125.Google Scholar
  67. 67.
    G. G. Talanova, V. S. Talanov, R. A. Bartsch, JCS, Chem. Comm., 1998, 1329.Google Scholar
  68. 68.
    G. G. Talanova, N. S. A. Nazar, V. S. Talanov, R. A. Bartsch, Anal. Chem., 1999, 71, 3106.CrossRefGoogle Scholar
  69. 69.
    D. N. Glew, D. A. Hames, Can. J. Chem., 1971, 49, 3114.CrossRefGoogle Scholar
  70. 70.
    M. I. Guijarro, S. Mendioroz, V. Munoz, Ind. Eng. Chem. Res., 1998, 37, 1088.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • D. Max Roundhill
    • 1
  1. 1.Texas Tech UniversityLubbockUSA

Personalised recommendations