Soil Washing and in Situ Stabilization Methods

  • D. Max Roundhill
Part of the Modern Inorganic Chemistry book series (MICE)


The contamination of soils by chemically toxic or radioactive metals presents a major environmental problem. This problem is a combination of several factors. One problem is that metals in an aqueous environment are usually in a cationic form. Since soils are generally zeolites, which are negatively charged structures, metals are strongly bound to them. This charge association between metals and soils is especially problematic when the metal ion has a high positive charge such as +3 and +4. In these cases the charge pairing interaction is high, and the metal ion cannot be easily extracted by ion exchange with singly charged cations such as protons or sodium(I). Solvent washing is also inefficient in such cases because the solvation energies are usually not sufficiently strong for the metals to be eluted with small volumes of fluid extractants. Another problem with contaminated soils is that they are fixed in place, which contrasts with waters that can often be transported to another more convenient site for subsequent cleansing. With soils, however, excavation and transportation to an alternative location is at best very expensive. In many cases of soil remediation, numerous other problems must also be addressed. One problem is that excavation and removal may not be viable because of the presence of buildings or trees on the site that are not scheduled for removal. In these cases, electrokinetic extraction (Chapter 4) of metals is a viable alternative, especially for the areas around and beneath these immovable objects. Another problem with the removal of metals by soil washing is that it is usually desirable for the soil to be reclaimed to its original state before the contamination occurred. Since natural soils contain a range of desirable cationic components, these ions must be subsequently replaced if a consequence of soil washing is that they are removed along with the toxic and/or radioactive metals. Soils also have particular properties that result from the particle size distribution within them, and the cleansing process must not destroy these individual characteristics that makes the soils useful for cultivation applications. In addition to soils, another fixed environment that presents particular problems for the cleansing of metal contaminants is contaminated buildings. In some cases the building can be demolished with the materials transported for off-site remediation, but in other cases it is only a portion of the building that is contaminated, and it is desirable to retain the entire structure.


Heavy Metal Humic Acid Current Efficiency Layered Double Hydroxide Kaolin Clay 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. S. Abdul, T. L. Gibson, Environ. Sci. Technol., 1991, 25, 665.CrossRefGoogle Scholar
  2. 2.
    A. N. Clark, P. J. Plumb, T. K. Subramanyam, D. J. Wilson, Sep. Sci. Technol., 1991, 26, 301.CrossRefGoogle Scholar
  3. 3.
    O. K. Gannon, P. Bibring, K. Raney, J. A. Ward, D. J. Wilson, J. L. Underwood, K. A. Debelak, Sep. Sci. Technol., 1989, 24, 1073.CrossRefGoogle Scholar
  4. 4.
    H. N. Hsieh, D. Raghu, J. Liskowitz, Hazard. Ind. Wastes, 22nd. Conf., 1990, 459.Google Scholar
  5. 5.
    T. H. Pfeifer, T. J. Nunno, J. S. Walters, Environ. Prog., 1990, 9, 79.CrossRefGoogle Scholar
  6. 6.
    P. M. Esposito, B. B. Locke, J. Greber, R. P. Traver, EPA Document 600/988/021. 1988.Google Scholar
  7. 7.
    H. A. Elliot, G. A. Brown, Water, Air, Soil Pollut., 1989, 45, 361.Google Scholar
  8. 8.
    H. A. Elliot, J. H. Linn, G. A. Shields, Hazard. Waste Hazard. Mater., 1989, 6, 223.CrossRefGoogle Scholar
  9. 9.
    H. E. Allen, P.-H. Chen, Environ. Prog., 1993, 12, 284CrossRefGoogle Scholar
  10. 10.
    S. B. Martin, Jr., H. E. Allen, Chemtech, 1996, 23.Google Scholar
  11. 11.
    C. G. Rampley, K. L. Ogden, Environ. Sci. Technol., 1998, 32, 987.CrossRefGoogle Scholar
  12. 12.
    G. Davies, A. Fataftah, A. Cherkasskiy, E. A. Ghabbour, A. Radwan, S. A. Jansen, S. Kolla, M. D. Paciolla, L. T. Sein, Jr., W. Buermann, M. Balasubramanian, J. Budnick, B. Xing, JCS, Dalton Trans., 1997, 4047.Google Scholar
  13. 13.
    R. G. Ford, A. C. Scheinost, K. G. Scheckel, D. L. Sparks, Environ. Sci. Technol., 1999, 33, 3140.CrossRefGoogle Scholar
  14. 14.
    W. R. Berti, S. D. Cunningham, Environ. Sci. Technol., 1997, 31, 1359.CrossRefGoogle Scholar
  15. 15.
    D. L. Lake, P. Kirk, J. N. Lester, J. Environ. Qual., 1984, 13, 175.CrossRefGoogle Scholar
  16. 16.
    G. M. Hettiarachchi, G. M. Pierzynski, M. D. Ransom, Environ. Sci. TechnoL, 2000, 34, 4614.CrossRefGoogle Scholar
  17. 17.
    L. J. Evans, Eviron. Sci. Technol., 1989, 23, 1046.CrossRefGoogle Scholar
  18. 18.
    B. J. Feldman, J. D. Osterioh, B. H. Hata, A. D. D’Alessandro, Anal. Chem., 1994, 66, 1983.CrossRefGoogle Scholar
  19. 19.
    E. P. Wagner, II, B. W. Smith, J. D. Winefordner, Anal. Chem., 1996, 68, 3199.CrossRefGoogle Scholar
  20. 20.
    B. J. Marquardt, S. R. Goode, S. M. Angel, Anal. Chem., 1996, 68, 977.CrossRefGoogle Scholar
  21. 21.
    B. Miles, J. Cortes, Field Anal. Chem. and Technol.,1998, 2, 75.Google Scholar
  22. 22.
    E. Baatrop, Comp. Biochem. Physical., 1991, 100C, 253.Google Scholar
  23. 23.
    P. Chakrabarti, F. M. Hatcher, R. C. Blake, II, P. A; Ladd, D. A. Blake, Anal. Biochem., 1994, 217, 70.CrossRefGoogle Scholar
  24. 24.
    M. Khosraviani, A. R. Parlov, G. C. Flowers, D. A. Blake, Environ. Sci. Technol., 1998, 32, 137.CrossRefGoogle Scholar
  25. 25.
    K. O’Leary, G. L. Long, Abstr. 50th S. E. Regional ACS Meeting,Research Triangle Park, N. C., Nov. 1998, Abstr. 223.Google Scholar
  26. 26.
    I. T. Urasa, N. Mwebi, Abstr. 50th S. E. Regional ACS Meeting,Research Triangle Park, N. C., Nov. 1998, Abstr. 226.Google Scholar
  27. 27.
    R. A. Abramovitch, D. A. Abramovitch, E. Hicks, J. M. Sinard, Abstr. 50th S. E. Regional ACS Meeting,Research Triangle Park, N. C., Nov. 1998, Abstr. 224.Google Scholar
  28. 28.
    U. Chatreewongsin, G. L. Long, H. M. McNair, Abstr. 50th S. E. Regional ACS Meeting,Research Triangle Park, N. C., Nov. 1998, Abstr. 222.Google Scholar
  29. 29.
    J. Hong, P. N. Pintauro, Water, Air and Soil Pollut., 1996, 86, 35.CrossRefGoogle Scholar
  30. 30.
    J. Hong, P. N. Pintauro, Water, Air and Soil Pollut., 1996, 87, 73.CrossRefGoogle Scholar
  31. 31.
    J. A. Cras, J. Willemse, Comprehensive Coordination Chemistry, Wilkinson, G. Ed., Pergamon, Oxford, 1987, Vol. 2, Ch. 16. 4.Google Scholar
  32. 32.
    K. D. Papadopoulos, H. Y. Cheh, Plating and Surf. Finishing, 1982, 69, 122.Google Scholar
  33. 33.
    P. C. Y. Huang, Y. C. Wu, K. C. Ou, Bornholm, J. K. Proc. 39th. Ind. Waste Water Conf., Purdue Univ. May, 1984.Google Scholar
  34. 34.
    E. Gomolka, B. Gomolka, Acta Hydrochim. Hydrobiol,. 1985, 13, 91.CrossRefGoogle Scholar
  35. 35.
    G. K. Anderson, C. B. Saw, Environ. Tech. Letts., 1987, 8, 121.CrossRefGoogle Scholar
  36. 36.
    I. N. Myasnikov, L. N. Butseva, L. V. Gandurina, Environ. Protect. Eng., 1985, 11, 119.Google Scholar
  37. 37.
    V. C. Gopalratnam, G. F. Bennett, R. W. Peters, Environ. Progr., 1988, 7, 84.CrossRefGoogle Scholar
  38. 38.
    N. Kosaric, Z. Duvnjak, W. L. Cairns, Environ. Progr., 1987, 6, 33.CrossRefGoogle Scholar
  39. 39.
    M. H. Bates, J. N. Veenstra, J. Barber, R. Bernard, J. Karleskint, P. Khan, R. Pakanti, M. Tate, Environ. Systems, 1990, 19, 237.Google Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • D. Max Roundhill
    • 1
  1. 1.Texas Tech UniversityLubbockUSA

Personalised recommendations