Alkali and Alkaline Earth Metals

  • D. Max Roundhill
Part of the Modern Inorganic Chemistry book series (MICE)


The selective extraction of alkali metal ions made a dramatic step forward with the discovery of the crown ethers. These oxygen-containing macrocycles are important because they were the first compounds that allowed alkali metal ions to be solubilized in organic solvents. These compounds effectively extract alkali metal ions into an organic solvent from an aqueous phase, and by changing the cavity size within the macrocycle selectivity, between the different alkali metals can be achieved. More recently, chemically modified calixarenes have been found to be good extractants for these ions. The present state of the art in designing extractants for alkali metal ions involves incorporating a crown ether moiety onto a calixarene framework. The resulting calixcrowns can be highly selective complexants and extractants for the individual alkali metal ions. Although early research in seeking hosts focused on discovering extractants for the lighter alkali metals such as sodium, more recently the focus has been on cesium because of its presence as one of the radioactive metals in nuclear wastes.


Alkali Metal Alkaline Earth Metal Crown Ether Alkali Metal Cation Alkali Metal Salt 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Y. Marcus, L. E. Asher, J. Phys. Chem, 1978, 82, 1246.CrossRefGoogle Scholar
  2. 2.
    F. Wada, Y. Wada, T. Goto, K. Kikukawa, T. Matsuda, Chem. Lett, 1980, 1189.Google Scholar
  3. 3.
    K. Kikukawa, H. Gong-Xin, A. Abe, T. Goto, R. Arata, T. Ikeda, F. Wada, T. Matsuda, JCS, Perkin Trans. 11, 1987, 135.CrossRefGoogle Scholar
  4. 4.
    A. S. Khan, W. G. Baldwin, A. Chow, Can. J. Chem, 1981, 59, 1490.CrossRefGoogle Scholar
  5. 5.
    U. Olsher, M. G. Hankins, Y. D. Kim, R. A. Bartsch, J. Am. Chem. Soc, 1993, 115, 3370.CrossRefGoogle Scholar
  6. 6.
    Y. Inoue, Y. Liu, F. Amano, M. Ouchi, A. Tai, T. Hakushi, JCS, Dalton Trans, 1988, 2735.Google Scholar
  7. 7.
    Y. Inoue, F. Amano, N. Okada, H. Inada, M. Ouchi, A. Tai, T. Hakushi, Y. Liu, L.-14. Tong, JCS, Perkin Trans 2, 1990, 1239.CrossRefGoogle Scholar
  8. 8.
    Y. Liu, L.-H. Tong, Y. Inoue, T Hakushi, JCS, Perkin Trans. 2, 1990, 1247.CrossRefGoogle Scholar
  9. 9.
    I. M. Kolthoff, M. K. Chantooni, Jr., J. Chem. Eng. Data, 1997, 42, 49.CrossRefGoogle Scholar
  10. 10.
    U. Olsher, J. Jagur-Grodzinski, JCS, Dalton Trans, 1981, 501.Google Scholar
  11. 11.
    R. A. Bartsch, M. D. Eley, A. P. Marchard, R. Shukla, K. A. Kumar, G. M. Reddy, Tetrahedron, 1996, 52, 8979.CrossRefGoogle Scholar
  12. 12.
    R. D. Rogers, A. H. Bond, C. B. Bauer, PureAppl. Chem., 1993, 65, 567.CrossRefGoogle Scholar
  13. 13.
    Y. Marcus, L. E. Asher, J. Phys. Chem, 1978, 82, 1246.CrossRefGoogle Scholar
  14. 14.
    J. D. Lamb, J. J. Christensen, S. R. Izatt, K. Bedke, M. S. Astin, R. M. Izatt, J. Am. Chem. Soc., 1980, 102, 339.Google Scholar
  15. 15.
    M. Burgard, L. Jurdy, H. S. Park, R. Heimburger, Nouv. J. Chem, 1983, 7, 575.Google Scholar
  16. 16.
    T. M. Fyles, Can. J. Chem, 1987, 65, 884.CrossRefGoogle Scholar
  17. 17.
    J. Strezelbicki, R. A. Bartsch, Anal. Chem., 1981, 53, 2251.Google Scholar
  18. 18.
    J. Strezelbicki, R. A. Bartsch, Anal. Chem., 1981, 53, 1984.Google Scholar
  19. 19.
    W. A. Charewicz, R. A. Bartsch, Anal. Chem., 1982, 54, 2300.Google Scholar
  20. 20.
    W. A. Charewicz, W. Walkowiak, R. A. Bartsch, Anal. Chem., 1987, 59, 494.CrossRefGoogle Scholar
  21. 21.
    W. Walkowiak, W. A. Charewicz, S. I. Kang, I.-W. Yang, M. J. Pugia, R. A. Bartsch, Anal. Chem, 1990, 62, 2018.Google Scholar
  22. 22.
    W. Walkowiak, S. I. Kang, L. E. Stewart, G. Ndip, R. A. Bartsch, Anal. Chem, 1990, 62, 2022.Google Scholar
  23. 23.
    R. A. Bartsch, B. P. Czech, S. I. Kang, L. E. Stewart, W. Walkowiak, W. A. Charewicz, G. S. Heo, B. Son, J. Am. Chem. Soc, 1985, 107, 4997.CrossRefGoogle Scholar
  24. 24.
    M. J. Rugia, G. L. Ndip, H. K. Lee, I. W. Yang, R. A. Bartsch, Anal. Chem, 1986, 58, 2723.Google Scholar
  25. 25.
    W. Walkowiak, G. M. Ndip, D. H. Desai, K. H. Lee, R. A. Bartsch, Anal. Chem., 1992, 64, 1685.CrossRefGoogle Scholar
  26. 26.
    B. P. Czech, H. Huh, R. A. Bartsch, J. Org. Chem., 1992, 57, 725.Google Scholar
  27. 27.
    R. A. Bartsch, I. W. Yang, E. G. Jeon, W. Walkowiak, W. A. Charewicz, J. Coord. Chem, 1992, 27, 75.CrossRefGoogle Scholar
  28. 28.
    R. B. Davidson, R. M. Izatt, J. J. Christensen, R. A. Schultz, D. M. Dishong, G. W. G.kel, J. Org. Chem., 1984, 49, 5080.CrossRefGoogle Scholar
  29. 29.
    Y. Inoue, C. Fujwara, K. Wada, A. Tai, T. Hakushi, JCS. Chem. Comm, 1987, 393.Google Scholar
  30. 30.
    Y. Inoue, M. Ouchi, K. Hosoyama, T. Hakushi, Y. Liu, Y. Takeda, JCS, Dalton Trans., 1991, 1291.Google Scholar
  31. 31.
    J. C. Hernandez, J. E. Trafton, G. W. Gokel, Tet. Letts., 1991, 32, 6269.CrossRefGoogle Scholar
  32. 32.
    M. Zinic, S. Alihodzic, V. Skaric, JCS, Perkin 1, 1993, 21.CrossRefGoogle Scholar
  33. 33.
    M. Ouchi, K. Mishima, R. Dohno, T. Hakushi, ACS Symp. Ser., 1997, 659, 293.Google Scholar
  34. 34.
    H. Nakamura, M. Takagi, K. Ueno, Anal. Chem, 1980, 52, 1668.CrossRefGoogle Scholar
  35. 35.
    T. Pigot, M.-C. Duriez, C. Picard, L. Cazaux, P. Tisnes, Tetrahedron, 1992, 42, 4359.CrossRefGoogle Scholar
  36. 36.
    A. P. Marchand, H.-S. Chong, Tetrahedron, 1999, 55, 9697.CrossRefGoogle Scholar
  37. 37.
    H. Sakamoto, H. Goto, K. Doi, M. Otomo, Chem. Lett, 1992, 1535Google Scholar
  38. 38.
    H. Nakamura, H. Sakka, M. Takagi, K. Ueno, Chem. Lett, 1981, 1305.Google Scholar
  39. 39.
    B. P. Bubnis, C. E. Pacey, Tet. Lett., 1984, 25, 1107.CrossRefGoogle Scholar
  40. 40.
    S. Shinkai, T. Ogawa, Y. Kusano, O. Manabe, Chem. Lett., 1980, 283.Google Scholar
  41. 41.
    S. Shinkai, T. Nakaji, T. Ogaura, K. Shigematsu, O. Manabe, J. Am. Chem. Soc,1981 /03 111.Google Scholar
  42. 42.
    S. Shinkai, T. Ogawa, T. Nakaji, Y. Kusano, O. Nanabe, Tetrahedron. Lett., 1979, 47, 4569.CrossRefGoogle Scholar
  43. 43.
    M. Shiga, M. Takagi, K. Ueno, Chem. Lett, 1980, 1021.Google Scholar
  44. 44.
    T. Pigot, M.-C. Duriez, C. Picard, L. Cazaux, P. Tisnes, Tetrahedron, 1992, 48, 4359.CrossRefGoogle Scholar
  45. 45.
    S. Shinkai, K. Shigematsu, Y. Kusano, O. Manabe, J. Chem. Soc, Perkin Trans. 1, 1981, 3279.Google Scholar
  46. 46.
    S. Shinkai, T. Ogaura, Y. Kusano, O. Manabe, K. Kikukaura, T. Goto, T. Matsuda, J. Am. Chem. Soc., 1982, 104, 1960.CrossRefGoogle Scholar
  47. 47.
    S. Shinkai, T. Minanin, Y. Kusano, O. Manabe, J. Am Chem. Soc., 1982, 104, 1967.CrossRefGoogle Scholar
  48. 48.
    S. Akabori, Y. Miura, N. Yotsumoto, K. Uchida, M. Kitano, Y. Habata, JCS, Perkin Trans. 1, 1995, 2589.CrossRefGoogle Scholar
  49. 49.
    H. Nishida, Y. Katayama, H. Katsuki, H. Nakamura, M. Takagi, K. Ueno, Chem. Lett., 1982, 1853.Google Scholar
  50. 50.
    M. Ouchi, Y. Inoue, H. Sakamoto, A. Yamahira, M. Yoshinaga, T. Hakushi, J. Org. Chem., 1983, 48, 3168.CrossRefGoogle Scholar
  51. 51.
    A. Samat, M. El. Malouli Bibout, J. Elguero, JCS, Perkin Trans. I, 1985, 1717.Google Scholar
  52. 52.
    Y. Inoue, K. Wada, Y. Liu, M. Ouchi, A. Tai, T. Hakushi, J. Org. Chem, 1989, 54, 5268.Google Scholar
  53. 53.
    H. Plenio, R. Diodone, J. Am. Chem. Soc., 1996, 118, 356CrossRefGoogle Scholar
  54. 54.
    Marchand, S. Alihodzic, A. S. McKim, K. A. Kumar, K. Mlinaric-Majerski, T. Sumanovae, Tetrahedron. Lett., 1998, 39, 1861.Google Scholar
  55. 55.
    S. P. Artz, D. J. Cram, J. Am. Chem. Soc., 1984, 106, 2160.Google Scholar
  56. 56.
    H. Tsukube, Y. Mizutani, S. Shinoda, T. Okazaki M. T.dokoro, K. Hori, Inorg. Chem., 1999, 38, 3506.CrossRefGoogle Scholar
  57. 57.
    H. Takemura, N. Kon, M. Yasutake, H. Kariyazono, T. Shinmyozu, T. Inazu, Angew. Chem., Int. Ed. Engl., 1999, 38, 959.Google Scholar
  58. 58.
    J. Vacek, P. A. Kollman, J. Phys. Chem. A., 1999, 103, 10015.Google Scholar
  59. 59.
    N. L. Kirsch, R. J. J. Funck, W. Simon, Heiv. Chim. Acta, 1978, 61, 2019.Google Scholar
  60. 60.
    H. Sasaki, A. Veno, T. Osa, Chem. Lett., 1986, 1785.Google Scholar
  61. 61.
    A. Schepartz, J. P. McDevitt, J. Am. Chem. Soc., 1989, 111, 5976.CrossRefGoogle Scholar
  62. 62.
    T. Mutou, K. Amimoto, H. Kanatomi, H. Koyama, T. Kawato, Chem. Lett, 1999, 1231Google Scholar
  63. 63.
    T.-I. Yamagishi, K. Tani, K. Shirano, S.-I. Lshida, Y. Nakamoto, J. Polym. Sci: Pan A: Polym. Chem, 1996, 34, 687.CrossRefGoogle Scholar
  64. 64.
    Q. Feng, H. Kanoh, Y. Miyai, K. Ooi, Chem. Mater, 1995, 7, 148.CrossRefGoogle Scholar
  65. 65.
    Q. Feng, H. Kanoh, Y. Miyai, K. Ooi, Chem. Mater, 1995, 7, 1226.CrossRefGoogle Scholar
  66. 66.
    Q. Feng, H. Kanoh, Y. Miyai, K. Ooi, Chem. Mater, 1995, 7, 1722.CrossRefGoogle Scholar
  67. 67.
    R. Dybezynski, J. Chromatogr., 1992, 600, 17.CrossRefGoogle Scholar
  68. 68.
    U. Olsher, H. Feinberg, F. Frolow, G. Shoham, Pure & Appl. Chem., 1996, 68, 1195.CrossRefGoogle Scholar
  69. 69.
    M. Hebrant, Y. Pointud, J. Juillard, J. Phys. Chem., 1991, 95, 3653.CrossRefGoogle Scholar
  70. 70.
    K. H. Wong, H. L. Ng, J. Coord. Chem., 1981, 11, 49.Google Scholar
  71. 71.
    W. J. McDowell, G. N. Case, J. A. McDonough, R. A. Bartsch, Anal. Chem., 1992, 64, 3013.CrossRefGoogle Scholar
  72. 72.
    V. M. Abashkin, E. A. Filippov, A. K. Nardova, I. V. Mamakin, G. F. Egorov, Mater. Res. Soc, Symp. Proc. 556 (Scientific Basis for Nuclear Waste Management XXII), 1999, 1291.Google Scholar
  73. 73.
    Y. Deng, R. A. Sachleben, B. A. Moyer, JCS, Farad. Trans, 1995, 91, 4215.CrossRefGoogle Scholar
  74. 74.
    T.G. Levitskaia, J. C. Bryan, R. A. Sachleben, J. D. Lamb, B.A. Moyer, J. Am. Chem. Soc 2000 122, 554 Google Scholar
  75. 75.
    K. Kavallieratos, R. A. Sachleben, G. J. Van Berkel, B. A. Moyer, JCS, Chem. Comm, 2000, 187.Google Scholar
  76. 76.
    M. R. Antonio, M. L. Dietz, M. P. Jensen, L. Soderholm, E. P. Horwitz, Inorg. Chim. Acta, 1997, 255, 13.CrossRefGoogle Scholar
  77. 77.
    V. Bonnesen, J. Haverlock, L. Engle, A. Sachleben, B. A. Moyer ACS Sympos. Ser. 2000, 757, 26.CrossRefGoogle Scholar
  78. 78.
    C. Vinas, J. Bertran, S. Gomez, F. Teixidor, J-F. Dozol, H. Rouquette, R. Kivekas, R. Sillanpaa, JCS, Dalton Trans, 1998, 2849.Google Scholar

Copyright information

© Springer Science+Business Media New York 2001

Authors and Affiliations

  • D. Max Roundhill
    • 1
  1. 1.Texas Tech UniversityLubbockUSA

Personalised recommendations