Skip to main content

Numerical Hydrodynamics of Estuaries

  • Chapter
Estuarine and Wetland Processes

Part of the book series: Marine Science ((MR,volume 11))

Abstract

Classically, estuaries have been classified dimensionally on the basis of the dominant salinity gradients. Following Pritchard (1958) the general classifications based on spatial averaging of the constituent transport relationship are: (1) three-dimensional; (2) laterally homogeneous with longitudinal and vertical spatial gradients dominant; (3) vertically homogeneous with longitudinal and lateral spatial gradients dominant, and (4) sectionally homogeneous with longitudinal gradients dominant. Development of the hydrodynamic (momentum transport) relationships follow similar spatial averaging and classification.

In general, the momentum balances determine the flow field by which the constituent is transported. The momentum and constituent transport are interrelated in estuaries through the horizontal density gradient as determined from the constituent distribution. Only the fourth case, sectional homogeneity, is solvable for a few limiting situations without use of the hydrodynamic relationships, and are situations for which the advective flow field can be inferred from fresh water inflow.

The development of numerical hydrodynamics for estuaries begins with a presentation of the equations of motion and constituent transport in three dimensions. The basic equations are: (1) the u-velocity or longitudinal momentum balance; (2) the v-velocity or lateral momentum balance; (3) the pressure distribution, p, as determined from the vertical momentum balance as the hydrostatic approximation; (4) the w or vertical velocity as determined from local continuity; (5) the salinity, S, constituent transport; (6) the equation of state relating density, p, to the constituent concentration, and (7) the free water surface elevation, n, as determined from vertically integrated continuity. The general numerical problem is, therefore, to spatially integrate numerically over time seven equations for the seven unknowns of u, v, w, P, S, p, n given appropriate geometry and time-varying boundary data. The seven equations are interrelated with the constituent distribution, S, determining density, p; with density and the free water surface elevation, n, determining pressure, P, and with the pressure distribution entering the momentum balance.

The two-dimensional and one-dimensional cases are derived from the three-dimensional relationships by spatial averaging. The laterally homogeneous estuary dynamics include a majority of the interrelationships of density, pressure and surface elevation incorporated in the three-dimensional equations. Explicit and implicit solution procedures can be illustrated for the laterally homogeneous relationships as they depend upon the inclusion of vertically integrated-velocities in the surface elevation computations. Laterally averaged hydrodynamic solution procedures that utilize simplifying assumptions for the longitudinal density gradient are also examined. The sectionally homogeneous hydrodynamics is shown to be a reduced case of the laterally homogeneous relationships.

The two-dimensional vertically homogeneous dynamics is presented as a reduced form of the vertically integrated three-dimensional case. The vertically homogeneous case has spatially explicit and implicit solution procedures, the properties of which can be illustrated from the basic equations. It will be shown that a surface elevation relationship exists for this case that has a variational statement leading to spatial finite element description.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bowden, K. F. and P. Hamilton (1975), “Some Experiments with a Numerical Model of Circulation and Mixing in a Tidal Estuary”, Estuarine and Coastal Marine Science 3, 281–301, (1975).

    Article  Google Scholar 

  • Blumberg, A. F. (1975), “A Numerical Investigation into the Dynamics of Estuarine Circulation”, The Johns Hopkins University, Chesapeake Bay Institute, Technical Report 91, Baltimore, MD, October, 1975.

    Google Scholar 

  • Blumberg, A. F. (1977b), “Numerical Tidal Model of Chesapeake Bay”, Jr. Hyd. Div. ASCE, Vol. 103, No. HY1, January, 1977.

    Google Scholar 

  • Blumberg, A. F. (1977a), “Numerical Model of Estuarine Circulation”, Jr. Hyd. Div. ASCE, Vol. 103, No. HY3, March, 1977.

    Google Scholar 

  • Edinger, J. E. and E. M. Buchak (1975), “A Hydrodynamic, Two-Dimensional Reservoir Model: The Computational Basis”, Contract No. DACW 27–74-C-0200, U. S. Army Engineer Division, Ohio River, Cincinnati, OH, September, 1975.

    Google Scholar 

  • Edinger, J. E. and E. M. Buchak (1977), “A Hydrodynamic Two-Dimensional Reservoir Model: Development and Test Application”, Contract No. DACW 27–76-C-0089, U. S. Army Engineer Division, Ohio River, Cincinnati, OH, August, 1977.

    Google Scholar 

  • Edinger, J. E. and E. M. Buchak (1979), “Preliminary LARM Simulations of the WES GRH Flume”, Report to the Reservoir Water Quality Branch, Hydraulic Structures Division, Hydraulics Laboratory, Corps of Engineers Waterways Experiment Station, Vicksburg, MS, April, 1979.

    Google Scholar 

  • Franklin, P. (1944), Methods of Advanced Calculus, McGraw-Hill, NY, 1944.

    Google Scholar 

  • Fread, D. L. (1973), “Technique for Dynamic Routing in Rivers with Tributaries”, Jr. Water Resources Research, 9 (4) (1973).

    Google Scholar 

  • Fread, D. L. (1975), Discussion of “Comparison of Four Numerical Methods for Flood Routing”, Jr. Hyd. Div. ASCE, Vol. 101, No. HY3, March, 1975.

    Google Scholar 

  • Grant, W. D. and O. S. Madsen (1979) “Combined Wave and Current Interaction With a Rough Bottom”, Jr. Geo. Res. AGU, Vol. 84 No. C4, April 20, 1979.

    Google Scholar 

  • Gray, W. G., G. F. Pinder, and C. A. Brebbia (1977) Finite Elements in Water Resources, Peutech Press, London (1977).

    Google Scholar 

  • Hamilton, P. (1975) “A Numerical Model of the Vertical Circulation of Tidal Estuaries and its Application to the Rotterdam Waterway”, Geophs. J. R. Astr. Soc, 40, 1–21, (1975).

    Article  Google Scholar 

  • Hamilton, P. and M. Rattray (1978). “Theoretical Aspects of Estuarine Circulation”, in Estuarine Transport Processes, Edited by Bjorn Kjerfve, University of South Carolina Press, Colombia, SC, 1978.

    Google Scholar 

  • Harleman, D. R. F. (1971), “One-Dimensional Models”, in Estuarine Modeling: An Assessment by Tracor, Inc. for the Water Quality Office Environmental Protection Agency, Project 16070DZV. U. S. Government Printing Office, Stock No. 5501–0129, Washington, D. C, February, 1971.

    Google Scholar 

  • Harleman, D. R. F. and M. L. Thatcher (1978), “Development of a Deterministic Time Varying Salinity Intrusion Model for the Delaware Estuary (MIT-TSIM), “Report to the Delaware River Basin Commission, Trenton, NJ, May, 1978.

    Google Scholar 

  • Lean, G. H. and T. J. Weare (1979), “Modeling Two Dimensional Circulating Flow”, HYD. Div. ASCE Vol. 105, No. HYD 1, January, 1979.

    Google Scholar 

  • Leendertse, J. J. (1970), “A Water-Quality Simulation Model for Well-Mixed Estuaries and Coastal Seas: Vol. I, Principles of Computation”, RAND Report RM-6230-RC, February, 1970.

    Google Scholar 

  • Leendertse, J. J. (1971), “Solution Techniques: Finite Differences: in Estuarine Modeling: An Assessment by Tracor, Inc. for the Water Quality Office Environmental Protection Agency, Project 16070DZV. U. S. Government Printing Office, Stock No. 5501–0129, Washington, D. C, February, 1971.

    Google Scholar 

  • Leendertse, J. J. and E. C. Gritton (1971), “A Water Quality Simulation Model for Well Mixed Estuaries and Coastal Seas: Vol. II, Computational Procedures”, RAND Report R-708-NYC, July, 1971.

    Google Scholar 

  • Leendertse, J. J. (1973), “A Three-Dimensional Model for Estuaries and Coastal Seas: Vol. 1, Principles of Computation”, RAND Report R-1414-OWRR, Santa Monica, CA, December, 1973.

    Google Scholar 

  • Leendertse, J. J. and S-K Liu (1975), “A Three-Dimensional Model For Estuaries and Coastal Seas: Vol. II, Aspects of Computation”, RAND Report R-1764-OWRT, Santa Monica, CA, June, 1975.

    Google Scholar 

  • Leendertse, J. J. and S-K Liu (1977), “A Three-Dimensional Model For Estuaries and Coastal Seas: Vol. IV, Turbulent Energy Computation”, RAND Report 2–2187-OWRT, Santa Monica, CA, May, 1977.

    Google Scholar 

  • Munk, W. H. and E. R. Anderson (1948), “Note on the Thermocline”, Jr. Mar. Res. 7: 276–295.

    Google Scholar 

  • Pritchard, D. W. (1958), “The Equations of Mass Continuity and Salt Continuity in Estuaries”, Jr. Mar. Res. 17: 412–423.

    Google Scholar 

  • Pritchard, D. W. (1971), “Hydrodynamic Models”, in Estuarine Modeling: An Assessment by Tracor, Inc. for the Water Quality Office Environmental Protection Agency, Project 16070DZV. U. S. Government Printing Office, Stock No. 5501–0129, Washington, D. C, February, 1971.

    Google Scholar 

  • Pritchard, D. W. (1978), “What Have Recent Observations Obtained for Adjustment and Verification of Numerical Models Revealed About the Dynamics and Kinematics of Estuaries?” in Estuarine Transport Processes, Edited by Bjorn Kjerfve, University of South Carolina Press, Colombia, SC, 1978.

    Google Scholar 

  • Reid, R. O. and B. R. Bodine (1963), “Numerical Model for Storm Surges in Galveston Bay”, Proc. ASCE WW1, February, 1963.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1980 Springer Science+Business Media New York

About this chapter

Cite this chapter

Edinger, J.E., Buchak, E.M. (1980). Numerical Hydrodynamics of Estuaries. In: Hamilton, P., Macdonald, K.B. (eds) Estuarine and Wetland Processes. Marine Science, vol 11. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-5177-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-5177-2_5

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-5179-6

  • Online ISBN: 978-1-4757-5177-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics