Advertisement

Endotoxin pp 319-330 | Cite as

Further Characterization of Monoclonal Antibodies to Lipopolysaccharide of Salmonella Minnesota Strain R595

  • B. J. Appelmelk
  • J. Cohen
  • A. Silva
  • A. M. J. J. Verweij-van Vught
  • H. Brade
  • J. J. Maaskant
  • W. F. Schouten
  • O. Mol
  • A. Honing
  • L. G. Thijs
  • D. M. MacLaren
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 256)

Abstract

It is well recognized that neutralization of endotoxin (lipopolysaccharide, LPS) by means of antibodies, could be of value in reducing the high mortality due to Gram-negative sepsis and septic shock. Of particular interest would be the availability of a single antiserum (or: monoclonal antibody), effective against the three bacterial species which are most often implicated, i.e., Escherichia coli, Klebsiella pneumoniae and Pseudomonas aeruginosa. A polyclonal antiserum, raised against a rough bacterial mutant of E. coli (strain J5) was found to have such cross-protective abilities, and to significantly reduce mortality in human septic shock (21). An intrinsic problem in the use of polyclonal antisera is the difficulty in knowing to which epitope(s) cross-protective antibodies is (are) directed. To answer this question monoclonal antibodies (mAbs) to the (LPS) core (and: lipid A) region have been prepared and tested for protection. The philosophy is that, since the LPS core region and the toxic lipid A part of the major Gram-negative species contain common structural elements, this core-lipid A part would be the ideal candidate for evoking cross-reactive monoclonal antibodies with LPS-neutralizing abilities. Indeed, the preparation of such cross-protective mAbs has been reported by at least two research groups (8, 19).

Keywords

Human Septic Shock Strain RS95 Common Structural Element Rough Strain Lethal Sepsis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Appelmelk, B. J., Verweij-van Vught, A. M. J. J., MacLaren, D. M., and Thijs, L. G., 1985, An enzyme-linked immunosorbent assay (ELISA) for the measurement of antibodies to different parts of the Gram-negative lipopolysaccharede core region. J. Immunol. Meth. 82: 199.Google Scholar
  2. 2.
    Appelmelk, B. J., Verweij-van Vught, A. M. J. J., Maaskant, J. J., Schouten, W. F., Thijs, L. G., and MacLaren, D. M., 1986, Use of mucin and hemoglobin in experimental murine Gram-negative bacteremia enhances the immunoprotective action of antibodies reactive with the lipopolysaccharide core region. Antonie van Leeuwenhoek 52: 537.PubMedCrossRefGoogle Scholar
  3. 3.
    Appelmelk, B. J., Verweij-van Vught, A. M. J. J., Maaskant, J. J., Schouten, W. F., Thijs, L. G., and MacLaren, D. M., 1987, Monoclonal antibodies detecting novel structures in the core region of Salmonella minnesota lipopolysaccharide. FEMS Microbiol. Lett. 40: 71.Google Scholar
  4. 4.
    Appelmelk, B. J., Verweij-van Vught, A. M. J. J., Brade, H., Maaskant, J. J., Schouten, W. F., Thijs, L. G., and MacLaren, D. M., 1988, Production, characterization and biological effects of monoclonal antibodies to different parts of the Gram-negative lipopolysaccharide core region, in: “Bacterial endotoxins: pathophysiological effects, clinical significance and pharmaceutical control,” J. ten Cate, H. Buller, A. Sturk, and J. Levin, eds., Alan R. Liss Inc., New York (in press).Google Scholar
  5. 5.
    Brade, L., Kosma, P., Appelmelk, B. J., Paulsen, H., and Brade, H., 1987, Use of synthetic antigens to determine the epitope specificities of monoclonal antibodies against the 3-deoxy-D-manno-octulosonate region of bacterial lipopolysaccharide. Infect. Immun. 55: 462.Google Scholar
  6. 6.
    Chong, K-T., and Huston, M., 1987, Implications of endotoxin contamination in the evaluation of antibodies to lipopolysaccharides in a murine model of gram-negative sepsis. J. Infect. Dis. 156: 713.Google Scholar
  7. 7.
    Cohen, J., and McConnell, J. S., 1984, Observations on the measurement and evaluation of endotoxemia by a quantitative Limulus lysate micro-assay. J. Infect. Dis. 150: 916.Google Scholar
  8. 8.
    Dunn, D. L., Ewald, D. C., Chandan, N., and Cerra, F. B., 1986, Immunotherapy of Gram-negative sepsis, A single murine monoclonal antibody provides cross-general protection. Arch. Surg. 121: 58.Google Scholar
  9. 9.
    Kato, N., Ohta, M., Kido, N., Ito, H., Naito, S., and Kuno, T., 1986, Stability of the nexagonal lattice structure formed by an R-form lipopolysaccharide of Klebsiella: decrease in the stability by electrodialysis and recovery by addition of the magnesium. Microbiol. Immunol. 30: 13.Google Scholar
  10. 10.
    Kosma, P., Gass, J., Schulz, G., Christian, R., and Unger, F. M., 1987, Artifical antigens: synthesis of polyacrylamide copolymers containing 3-deoxy-D-manno-2-octulopyranosylono (KDO) residues. Carbohydr. Res. 167: 39.Google Scholar
  11. 11.
    Marks, M. I., Ziegler, E. J., Douglas, H., Corbeil, L. B., and Braude, A. I., 1982, Induction of immunity against lethal Haemophilus influenzae type b infection by Escherichia coli core lipopolysaccharide. J. Clin. Invest. 69: 742.Google Scholar
  12. 12.
    Moore, R. W., Bates, N. C., Hancock, R. E. W., 1986, Interaction of polycationic antibiotics with Pseudomonas aeruginosa lipopolysaccharide and lipid A studied by using dansylpolymyxin. Antimicrob. Agents Chemother. 29: 496.PubMedCrossRefGoogle Scholar
  13. 13.
    Morrison, D. C., Jacobs, D. M., 1976, Binding of Polymyxin B to the lipid A portion of bacterial lipopolysaccharides. Immunochemistry 813: 13.Google Scholar
  14. 14.
    Paulsen, H., and Schuller, M., 1987, Synthesis of KDO-containing lipid A analogues. Liebigs Ann. Chem. 1987: 247.Google Scholar
  15. 15.
    Pitt. T. L., MacDougal, J., Penketh, A. R. L., and Cooke, E. M., 1986, Polyagglutinating and non-typable strains of Pseudomonas aeruginosa in cystic fibrosis. J. Med. Microbiol. 21: 179.Google Scholar
  16. 16.
    Rifkind, D., 1967, Prevention by polymyxin B of endotoxin lethality in mice. J. Bacteriol. 93: 1463.Google Scholar
  17. 17.
    Tacken, A., Rietschel, E. T., and Brade, H., 1986, Methylation analysis of the heptose/3-deoxy-D-manno-2-octulosonic acid region (inner core) of lipopolysaccharide from Salmonella minnesota rough mutants. Carbonhydr. Res. 149: 279.Google Scholar
  18. 18.
    Trautmann, M., Muller-Leutloff, Y., Hofstaetter, T., Seiler, F. R., and Hahn, H., 1985, Experimental Kiebsiella septicemia in mice: treatment with specific antibodies from the rabbit alone and in combination with the gentamicin. Infection 13: 37.Google Scholar
  19. 19.
    Teng, N. H., Kaplan. H. S., Hebert, J. M., Moore, C., Douglas, H., Wunderlich, A., and Braude, A. I., 1985, Protection against Gram-negative bacteremia and endotoxemia with human monoclonal IgM antibodies. Proc. Natl. Acad. Sci. USA 82: 1790.Google Scholar
  20. 20.
    Woods, J. P., Black, J. R., Barritt, D. S., Connell, T. D., and Cannon, J. G., 1987, Resistance to meningococcemia apparently conferred by anti-H8 monoclonal antibody is due to contaminating endotoxin and not to specific immunoprotection. Infect. Immun. 55: 1927.Google Scholar
  21. 21.
    Ziegler, E. J., McCuthan, J. A., Fierer, J., Glauser, M. P., Sadoff, J. C., Douglas. H., Braude, A. I., 1982. Treatment of Gram-negative bacteremia and shock with human antiserum to a mutant Escherichia coli. N. Engl. J. Med. 307: 1225.Google Scholar

Copyright information

© Springer Science+Business Media New York 1990

Authors and Affiliations

  • B. J. Appelmelk
    • 1
  • J. Cohen
    • 2
  • A. Silva
    • 2
  • A. M. J. J. Verweij-van Vught
    • 1
  • H. Brade
    • 3
  • J. J. Maaskant
    • 1
  • W. F. Schouten
    • 1
  • O. Mol
    • 1
  • A. Honing
    • 1
  • L. G. Thijs
    • 4
  • D. M. MacLaren
    • 1
  1. 1.Department of Medical MicrobiologyVrije UniversiteitAmsterdamThe Netherlands
  2. 2.Infectious Diseases Unit, Royal Postgraduate Medical SchoolHammersmith HospitalLondonUK
  3. 3.Forschungsinstitut BorstelBorstelGermany
  4. 4.Medical Intensive Care UnitVrije UniversiteitAmsterdamThe Netherlands

Personalised recommendations