Advertisement

Empirical evidence of paradoxes of voting in Dutch elections

  • Ad M. A. Van Deemen
  • Noël P. Vergunst
Chapter

Abstract

In this paper we analyze four national elections held in 1982, 1986, 1989 and 1994 in the Netherlands on the occurrence of the Condorcet paradox. In addition, we investigate these elections on the occurrence of three so-called majority-plurality paradoxes. The first paradox states that a party having a majority over another party may receive less seats. The second states that a Condorcet winner may not receive the largest number of seats and even may not receive a seat at all. The third says that the majority relation may be the reverse of the ranking of parties in terms of numbers of seats.

Keywords

Public Choice Majority Rule Proportional Representation National Election Condorcet Winner 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arrow, K.J. (1963). Social choice and individual values. New Haven and London: Yale University Press. Second Edition.Google Scholar
  2. Black, D. (1958). The theory of committees and elections. Cambridge: Cambridge University Press.Google Scholar
  3. Blydenburgh, J.C. (1971). The closed rule and the paradox of voting. The Journal of Politics 33: 57–71.CrossRefGoogle Scholar
  4. Campbell, C. and Tullock, G. (1965). A measure of the importance of cyclical majorities. Economic Journal 75: 853–857.CrossRefGoogle Scholar
  5. Chamberlin, J.R., Cohen, J.L. and Coombs, C.H. (1984). Social choice observed: Five presidential elections of the American Psychological Association. The Journal of Politics 46: 479–502.CrossRefGoogle Scholar
  6. Condorcet, M. (1785). Essai sur l’application de l’analyse à la probabilité des decisions rendues à la pluralité de voix. Paris.Google Scholar
  7. Condorcet, M. (1789). Sur la forme des elections. Paris.Google Scholar
  8. Dahl, R. (1989). Democracy and its critics. New Haven: Yale University Press.Google Scholar
  9. DeMeyer, F. and Plott, C. (1970). The probability of a cyclical majority. Econometrica 38: 345–354.CrossRefGoogle Scholar
  10. Feld, S. and Grofman, B. (1992). Who’s afraid of the Big Bad Cycle? Evidence from 36 elections. Journal of Theoretical Politics 4: 231–237.CrossRefGoogle Scholar
  11. Garman, M.B. and Kamien, M.I. (1968). The paradox of voting: Probability calculations. Behavioral Science 13: 306–316.CrossRefGoogle Scholar
  12. Gehrlein, W.V. (1983). Condorcet’s paradox. Theory and Decision 15: 161–197.CrossRefGoogle Scholar
  13. Gehrlein, W. and Fishburn, P. (1976). The probability of the paradox of voting: A computable solution. Journal of Economic Theory 12: 14–25.CrossRefGoogle Scholar
  14. Jamison, D.T. (1975). The probability of intransitive majority rule: An empirical study. Public Choice 23: 87–94.CrossRefGoogle Scholar
  15. Jones, B., Radcliff, B., Taber, C. and Timpone, R. (1995). Condorcet winners and the paradox of voting: Probability calculations for weak preferences orders. American Political Science Review 89: 137–147.CrossRefGoogle Scholar
  16. Klahr, D. (1966). A computer simulation of the paradox of voting. The American Political Science Review 60: 384–390.CrossRefGoogle Scholar
  17. May, R.M. (1971). Some mathematical remarks on the paradox of voting. Behavioral Science 16: 143–151.CrossRefGoogle Scholar
  18. Niemi, R.G. (1970). The occurrence of the paradox of voting in university elections. Public Choice 91–100.Google Scholar
  19. Niemi, R.G. and Weisberg, H.F. (1968). A mathematical solution for the probability of the paradox of voting. Behavioral Science 13: 317–323.CrossRefGoogle Scholar
  20. Niemi, R.G. and Wright, J.R. (1987). Voting cycles and the structure of individual preferences. Social Choice and Welfare 4: 173–183.CrossRefGoogle Scholar
  21. Radcliff, B. (1994). Collective preferences in presidential elections. Electoral Studies 13: 50–57.CrossRefGoogle Scholar
  22. Riker, W.H. (1965). Arrow’s Theorem and some examples of the paradox of voting. In J.M. Claunch (Ed.), Mathematical applications in political science, 41–60. Dallas: Southern Methodist University Press.Google Scholar
  23. Riker, W.H. (1982). Liberalism against populism. San Francisco: Freeman.Google Scholar
  24. Sen, A. (1966). A possibility theorem on majority decisions. Econometrica 34: 491–499.CrossRefGoogle Scholar
  25. Tännsjö, T. (1992). Populist democracy: A defence. London: Routledge.Google Scholar
  26. Tullock, G. (1981). Why so much stability? Public Choice 37: 189–202.CrossRefGoogle Scholar
  27. Van Deemen, A.M.A. (1993). Paradoxes of voting in list systems of proportional representation. Electoral Studies 12: 234–241.CrossRefGoogle Scholar
  28. Vergunst, N.P. (1995). De empirische bruikbaarheid van de stemparadox. Master thesis. Nijmegen: Katholieke Universiteit Nijmegen (In Dutch).Google Scholar
  29. Vergunst, N.P. (1996). Besluitvorming over kerncentrale Borssele: Een analyse van de stemparadox in de Nederlandse politiek. Acta Politica 31: 209–228.Google Scholar

Copyright information

© Springer Science+Business Media Dordrecht 1998

Authors and Affiliations

  • Ad M. A. Van Deemen
    • 1
  • Noël P. Vergunst
    • 2
  1. 1.Department of Political ScienceUniversity of NijmegenNijmegenThe Netherlands
  2. 2.Department of Political Science and Public AdministrationFree University AmsterdamAmsterdamThe Netherlands

Personalised recommendations