L-Function of an Elliptic Curve and Its Analytic Continuation

  • Dale Husemöller
Part of the Graduate Texts in Mathematics book series (GTM, volume 111)


We introduce the L-function of an elliptic curve E over a number field and derive its elementary convergence properties. An L-function of this type was first introduced by Hasse, and the concept was greatly extended by Weil. For this reason it is frequently called the Hasse-Weil L-function.


Functional Equation Analytic Continuation Zeta Function Modular Form Elliptic Curve 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer Science+Business Media New York 1987

Authors and Affiliations

  • Dale Husemöller
    • 1
  1. 1.Department of MathematicsHaverford CollegeHaverfordUSA

Personalised recommendations