Advertisement

Nonlinear Optics

  • Ansgar Liebsch
Chapter
Part of the Physics of Solids and Liquids book series (PSLI)

Abstract

Optical second harmonic generation (SHG) and sum frequency generation (SFG) provide a unique opportunity for studying surface and interface properties. After introducing the phenomenological theory of SHG at metal surfaces, we discuss recent microscopic evaluations of the nonlinear surface polarizability components. As before, we focus on the nonlinear response at simple metal surfaces. In these systems, the isotropic perpendicular component of the surface polarization is particularly important since it is determined by the gradients of the normal component of the electric field. A striking result of the TDLDA calculations is that, as in the linear case, the main spectral features are the threshold excitation and multipole surface plasmon. These excitations play an important role in SHG from Al and adsorbed alkali metal layers. The remarkable surface sensitivity of the perpendicular polarization can be seen if the metal is charged. We also discuss surfaces at which the inversion symmetry is broken in the parallel direction, for example, the (111) face of fcc crystals and stepped metal surfaces. The anisotropic component of the surface polarization in these systems can be as large as the main isotropic component.

Keywords

Second Harmonic Generation Interband Transition Simple Metal Jellium Model Harmonic Intensity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adler, E., Phys. Rev. 134, A728 (1964).ADSCrossRefGoogle Scholar
  2. Akulin, V. M., S. Goller, G. J. G. DaCosta, and F. Rebentrost, J. Phys. CM 4, 3857 (1992).Google Scholar
  3. Argyres, P., Phys. Rev. 97, 334 (1955).ADSCrossRefGoogle Scholar
  4. Bloembergen, N., R. K. Chang, S. S. Jha, and C. H. Lee, Phys. Rev. 174, 813 (1968).ADSCrossRefGoogle Scholar
  5. Budd, H. F., and J. Vannimenus, Phys. Rev. B 12, 509 (1975).Google Scholar
  6. Cheng, H., and P. B. Miller, Phys. Rev. 134, A683 (1964).ADSCrossRefGoogle Scholar
  7. Chizmeshya, A., and E. Zaremba, Phys. Rev. B 37, 2805 (1988).Google Scholar
  8. Cirai, M., R. Del Sole, and L. Reining, Surf. Sci. 287/288, 693 (1993).Google Scholar
  9. Corvi, M., and W. L. Schaich, Phys. Rev. B 33, 3688 (1986).Google Scholar
  10. Falicov, L. M., Phys. Today 45, 46 (1992).CrossRefGoogle Scholar
  11. Ghahramani, E., D. J. Moss, and J. E. Sipe, Phys. Rev. Lett. 64 2815 (1990); Phys. Rev. B 43, 9700 (1991).Google Scholar
  12. Guyot—Sionnest, P., W. Chen, and Y. R. Shen, Phys. Rev. B 33, 8254 (1986).Google Scholar
  13. Guyot—Sionnest, P., A. Tadjedinne, and A. Liebsch, Phys. Rev. Lett. 64, 1678 (1990).Google Scholar
  14. Hicks, J. M., L. E. Urbach, E. W. Plummer, and H. L. Dai, Phys. Rev. Lett. 61, 2588 (1988).ADSCrossRefGoogle Scholar
  15. Hu, C. D., J. Phys. CM 8, 6629 (1996).Google Scholar
  16. Hübner, W., Phys. Rev. B 42, 11553 (1990).Google Scholar
  17. Hübner, W., and K. H. Bennemann, Phys. Rev. B 40, 5973 (1989).Google Scholar
  18. Ishida, H., and A. Liebsch, Phys. Rev. B 42, 5505 (1990).Google Scholar
  19. Ishida, H., and A. Liebsch, Phys. Rev. B 50, 4834 (1994).Google Scholar
  20. Ishida, H., A. V. Petukhov, and A. Liebsch, Surf. Sci. 340, 1 (1995).ADSCrossRefGoogle Scholar
  21. Janz, S., K. Pedersen, and H. M. van Driel, Phys. Rev. B 44, 3943 (1991a).Google Scholar
  22. Janz, S., D. J. Bottomley, H. M. van Driel, and R. S. Timsit, Phys. Rev. Lett. 66, 1201 (1991b).ADSCrossRefGoogle Scholar
  23. Janz, S., and H. M. van Driel, Int. J. Nonl. Opt. Phys. 2, 1 (1993).CrossRefGoogle Scholar
  24. Jha, S. S., and C. S. Warke, Phys. Rev. 153, 751 (1967).ADSCrossRefGoogle Scholar
  25. Jiang, M. Y., G. Pajer, and E. Burstein, Surf. Sci. 242, 306 (1991). Johnson, P. B., and R. W. Christy, Phys. Rev. B 6, 4370 (1972).Google Scholar
  26. Kiejna, A., Surf. Sci. 331-333, 1167 (1995).ADSCrossRefGoogle Scholar
  27. Kittel, C., Phys. Rev. 83, A208 (1951).CrossRefGoogle Scholar
  28. Koopmans, B., M. G. Koerkamp, T. Rasing, and H. van den Berg, Phys. Rev. Lett. 74, 3692 (1995).ADSCrossRefGoogle Scholar
  29. Krivoshchekov, G. V., and V. I. Stroganov, Soy. Phys. Solid State 11, 89 (1969); 11, 2151 (1970).Google Scholar
  30. Kuchler, M., and F. Rebentrost, Phys. Rev. Lett. 71, 2662 (1993); Phys. Rev. B 50, 5651 (1994).Google Scholar
  31. Langhoff, P. W., S. T. Epstein, and M. Karplus, Rev. Mod. Phys. 44, 602 (1972).MathSciNetADSCrossRefGoogle Scholar
  32. Liebsch, A., Phys. Rev. Lett. 43, 1431 (1979).ADSCrossRefGoogle Scholar
  33. Liebsch, A., Phys. Rev. Lett. 61, 1233 (1988).ADSCrossRefGoogle Scholar
  34. Liebsch, A., Phys. Rev. B 40, RC 3421 (1989).Google Scholar
  35. Liebsch, A., and W. L. Schaich, Phys. Rev. B 40, 5401 (1989).Google Scholar
  36. Liebsch, A., in Condensed Matter Physics Aspects of Electrochemistry, M Tosi and A. A. Kornyshev, eds. ( World Scientific, Singapore, 1991 ), 274.Google Scholar
  37. Liljenvall, H. G., and A. G. Mathewson, J. Phys. C Metal Phys. Suppl. 3, 5341 (1970).Google Scholar
  38. Lindgren, S. A., and L. Walldén, Phys. Rev. B 45, 6345 (1992).Google Scholar
  39. Maytorena, J. A., W. L. Mochân, and B. S. Mendoza, Phys. Rev. B 51, 2556 (1995).Google Scholar
  40. Maytorena, J. A., B. S. Mendoza, and W. L. Mochân, to be published (1997).Google Scholar
  41. Mendoza, B. S., and W. L. Mochân, Phys. Rev. B 53, 4999 (1996).Google Scholar
  42. Mochân, W. L., and B. S. Mendoza, J. Phys. CM 5, A183 (1993).Google Scholar
  43. Murphy, R., M. Yeganeh, K. J. Song, and E. W. Plummer, Phys. Rev. Lett. 63, 318 (1989).ADSCrossRefGoogle Scholar
  44. Oppeneer, P. M., T. Maurer, J. Sticht, and J. Kübler, Phys. Rev. B 45, 10924 (1992).Google Scholar
  45. Pan, R. P., H. D. Wei, and Y. R. Shen, Phys. Rev. B 39, 1229 (1989).Google Scholar
  46. Patterson, C. H., D. Weaire, and J. F. McGilp, J. Phys. CM 4, 4017 (1992).Google Scholar
  47. Persson, B. N. J., and L. H. Dubois, Phys. Rev. B 39, 8220 (1989).Google Scholar
  48. Petukhov, A. V., Surf. Sci. 347, 143 (1996).ADSCrossRefGoogle Scholar
  49. Petukhov, A. V., and A. Liebsch, Surf. Sci. 294, 381 (1993).ADSCrossRefGoogle Scholar
  50. Petukhov, A. V., and A. Liebsch, Surf. Sci. 320, L51 (1994).CrossRefGoogle Scholar
  51. Petukhov, A. V., and A. Liebsch, Surf. Sci. 331/333, 1335 (1995a).Google Scholar
  52. Petukhov, A. V., and A. Liebsch, Surf Sci. 334, 195 (1995b).ADSCrossRefGoogle Scholar
  53. Pustogowa, U., W. Hübner, and K. H. Bennemann, Phys. Rev. B 49, 10031Google Scholar
  54. Quail, J. C., and H. J. Simon, Phys. Rev. B 31, 4900 (1985).Google Scholar
  55. Reider, G. A., and T. F. Heiz, in Electromagnetic Waves: Recent Developments in Research; vol. 2: Photonic Probes of Surfaces, P. Halevi, ed. ( Elsevier, Amsterdam, 1995 ), p. 413.Google Scholar
  56. Reif, J., C. Rau, and E. Matthias, Phys. Rev. Lett. 71, 1931 (1993).ADSCrossRefGoogle Scholar
  57. Reiff, S., W. Drachsel, and J. H. Block, Surf. Sci. 304, L420 (1994).CrossRefGoogle Scholar
  58. Reim, W., and J. Schoenes, in Ferromagnetic Materials, E. P. Wohlfahrt and K. H. J. Buschow, eds. ( North-Holland, Amsterdam, 1990 ), vol. 5, p. 133.Google Scholar
  59. Reining, L., R. Del Sole, M. Cini, and J. G. Ping, Phys. Rev. 50, 8411 (1994).ADSGoogle Scholar
  60. Richmond, G. L., J. M. Robinson, and V. L. Shanon, Prog. Surf. Sci. 28, 1 (1988).ADSCrossRefGoogle Scholar
  61. Rudnick, J., and E. A. Stern, Phys. Rev. B 4, 4272 (1971).Google Scholar
  62. Schaich, W. L., Surf. Sci. 318, L1157 (1994).ADSCrossRefGoogle Scholar
  63. Schaich, W. L., unpublished (1995).Google Scholar
  64. Schaich, W. L., and A. Liebsch, Phys. Rev. B 37, 6187 (1988).Google Scholar
  65. Schaich, W. L., and B. S. Mendoza, Phys. Rev. B 45, 14279 (1992).Google Scholar
  66. Senatore, G., and K. R. Subbaswamy, Phys. Rev. A 35, 2440 (1987).Google Scholar
  67. Shen, Y. R., The Principles of Nonlinear Optics ( Wiley, New York, 1984 ).Google Scholar
  68. Shen, Y. R., Nature 337, 519 (1989).ADSCrossRefGoogle Scholar
  69. Shen, Y. R., Surf. Sci. 299-300, 551 (1994).ADSCrossRefGoogle Scholar
  70. Sipe, J. E., V. C. Y. So, M. Fukui, and G. I. Stegeman, Phys. Rev. B 21, 4389 (1980).Google Scholar
  71. Sipe, J. E., D. J. Moss, and H. M. van Driel, Phys. Rev. B 35, 1129 (1987).Google Scholar
  72. Smith, N. V., Phys. Rev. B 2, 2840 (1970).Google Scholar
  73. Song, K. J., D. Heskett, H. L. Dai, A. Liebsch, and E. W. Plummer, Phys. Rev. Lett. 61, 1380 (1988).ADSCrossRefGoogle Scholar
  74. Straub, M., R. Vollmer, and J. Kirschner, Phys. Rev. Lett. 77, 743 (1996).ADSCrossRefGoogle Scholar
  75. Sturm, K., and L. E. Oliveira, Phys. Rev. B 30, 4352 (1984).Google Scholar
  76. Tarriba, J., and W. L. Mochân, Phys. Rev. B 46, RC 12902 (1992).Google Scholar
  77. Tom, H. W. K., T. F. Heinz, and Y. R. Shen, Phys. Rev. Lett. 51, 1983 (1983).ADSCrossRefGoogle Scholar
  78. Torn, H. W. K., C. M. Mate, X. D. Zhu, J. E. Crowell, T. F. Heinz, G. A. Somorjai and Y. R. Shen, Surf. Sci. 172, 466 (1986).ADSCrossRefGoogle Scholar
  79. Urbach, L. E., K. L. Percival, J. Hicks, E. W. Plummer, and H. L. Dai, Phys. Rev. B 45, 3769 (1992).Google Scholar
  80. Wang, C. S., J. M. Chen, and J. R. Bower, Opt. Commun. 8, 275 (1973).ADSCrossRefGoogle Scholar
  81. Wang, J., Z. C. Ying, and E. W. Plummer, unpublished (1994).Google Scholar
  82. Wang, J., Z. C. Ying, and E. W. Plummer, Phys. Rev. B 51, 5590 (1995).Google Scholar
  83. Weber, M., and A. Liebsch, Phys. Rev. B 35, 7411 (1987a).Google Scholar
  84. Weber, M., and A. Liebsch, Phys. Rev. B 36, 6411 (1987b).Google Scholar
  85. Weinert, M., private communication (1994).Google Scholar
  86. Westin, E., and A. Rosen, Surf. Sci. 269/270, 77 (1991).Google Scholar
  87. Wierenga, H. A., W. de Jong, M. W. J. Prins, T. Rasing, R. Vollmer, A. Kirilyuk, H. Schwabe, and J. Kirschner, Phys. Rev. Lett. 74, 1462 (1995).ADSCrossRefGoogle Scholar
  88. Wijers, C. M. J., Th. Rasing, and R. W. J. Hollering, Solid State Commun. 85, 233 (1993).ADSCrossRefGoogle Scholar
  89. Wong, E. K. L., and G. L. Richmond, J. Chem. Phys. 99, 5500 (1993).ADSCrossRefGoogle Scholar
  90. Ying, Z. C., J. Wang, G. Andronica, J. Q. Yao, and E. W. Plummer, J. Vac. Sci. Technol. A 11, 2255 (1993).ADSCrossRefGoogle Scholar
  91. Zangwill, A., J. Chem. Phys. 78, 5926 (1983).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1997

Authors and Affiliations

  • Ansgar Liebsch
    • 1
  1. 1.Forschungszentrum JülichJülichGermany

Personalised recommendations