An Introduction to Electron Energy-Loss Spectroscopy

  • R. F. Egerton


Electron energy-loss spectroscopy (EELS) involves analyzing the energy distribution of initially monoenergetic electrons, after they have interacted with a specimen. This interaction may take place within a few atomic layers, as when a beam of low-energy (100–1000 eV) electrons is “reflected” from a solid surface. Because high voltages are not involved, the apparatus is relatively compact, but the low penetration depth implies the use of ultrahigh vacuum; otherwise information is obtained mainly from the carbonaceous or oxide layers on the specimen’s surface. At these low primary energies, a monochromator can be used to reduce the energy spread of the primary beam to a few millielectron volts (Ibach, 1991), and provided the spectrometer has a comparable resolution, the spectrum contains features characteristic of energy exchange with vibrational modes of surface atoms, as well as valence-electron excitation in these atoms. The technique is therefore referred to as high-resolution electron energy-loss spectroscopy (HREELS) and is used for studying the physics and chemistry of surfaces and of adsorbed atoms or molecules. Although it is an important tool of surface science, HREELS uses concepts which are substantially different to those involved in electron-microscope studies, so it will not be discussed further in the present volume. The physics and instrumentation involved are dealt with by Ibach and Mills (1992).


Inelastic Scattering Scanning Transmission Electron Microscope Incident Electron Thin Specimen Ultraviolet Photoelectron Spectroscopy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Further Reading

  1. Reimer, L. (1993) Transmission Electron Microscopy, third edition. Springer Series in Optical Sciences, Vol. 36, Springer-Verlag, New York.Google Scholar
  2. Hirsch, P. B., Howie, A., Nicholson, R. B., Pashley, D. W., and Whelan, M. J. (1977) Electron Microscopy of Thin Crystals, Krieger, Huntington, New York.Google Scholar
  3. Spence, J. C. H. (1988a) Experimental High-Resolution Electron Microscopy, second edition. Oxford University Press, New York and Oxford.Google Scholar
  4. Spence, J. C. H. (1988b) Inelastic electron scattering. In High-Resolution Transmission Electron Microscopy and Associated Techniques, ed. P. Buseck, J. Cowley, and L. Eyring, Oxford University Press, New York, pp. 129 - 189.Google Scholar
  5. Wang, Z. L. (1996) Reflection Electron Microscopy and Spectroscopy for Surface Analysis. Cambridge University Press, U.K.CrossRefGoogle Scholar
  6. Williams, D. B. (1987) Practical Analytical Electron Microscopy in Materials Science, revised edition. Techbooks, Herndon, Virginia.Google Scholar
  7. Hren, J. J., Goldstein, J. I., and Joy, D. C. eds. (1979) Introduction to Analytical Electron Microscopy, Plenum Press, New York.Google Scholar
  8. Joy, D. C., Romig, A. D., and Goldstein, J. I. eds. (1986) Principles of Analytical Electron Microscopy, Plenum Press, New York.Google Scholar
  9. Lyman, C. E., Newbury, D. E., Goldstein, J. I., Williams, D. B., Romig, A. D.. Armstrong, J. T., Echlin, P., Fiori, C. E., Joy, D. C., Lifshin, E., and Peters, K.-R. (1990) Scanning Electron Microscopy, X-ray Microanalysis, and Analytical Electron Microscopy: a Laboratory Workbook, Plenum Press, New York.Google Scholar
  10. Fitzgerald, A. G., Storey, B. J., and Fabian, D., eds. (1992) Quantitative Microbeam Analysis, Scottish Universities Summer School in Physics, Edinburgh and Institute of Physics Publishing, Bristol and Philadelphia.Google Scholar
  11. Leapman, R. D., and Silcox, J. (1979) Orientation dependence of core edges in electron energy-loss spectra from anisotropic materials. Phys. Rev. Lett. 42, 1361 - 1364.Google Scholar
  12. Maher, D. M., Joy, D. C., Egerton, R. F., and Mochel, P. (1979) The functional form of energy-differential cross sections for carbon using transmission electron energy-loss spectroscopy. J. Appl. Phys. 50, 5105 - 5109.CrossRefGoogle Scholar
  13. Joy, D. C., and Maher, D. M. (1980c) Electron energy-loss spectroscopy. J. Phys. E. (Sci. Instrum.) 13, 261 - 270.CrossRefGoogle Scholar
  14. Isaacson, M. (1981) All you might want to know about ELS (but were afraid to ask): A tutorial. In Scanning Electron Microscopy, SEM Inc., (A. M. F. O’Hare, Illinois,) Part 1, pp. 763 - 776.Google Scholar
  15. Gorlen, K. E., Barden, L. K., DelPriore, J. S., Fiori, C. E., Gibson, C. G., and Leapman, R. D. (1984) Computerized analytical electron microscope for elemental imaging. Rev. Sci. Instrum. 55, 912 - 921.CrossRefGoogle Scholar
  16. Zaluzec, N. J. (1988) A beginner’s guide to electron energy loss spectroscopy. EMSA Bull. 16, 58-63, 72 - 80.Google Scholar
  17. Egerton, R. F. (1992b) Electron energy-loss spectroscopy—EELS. In Quantitative Microbeam Analysis, ed. A. G. Fitzgerald, B. E. Storey, and D. Fabian, SUSSP, Edinburgh, and IOP, Bristol, pp. 145 - 168.Google Scholar
  18. Egerton, R. F. (1984a) Parallel-recording systems for electron energy-loss spectroscopy (EELS). J. Electron Microsc. Tech. 1, 37 - 52.CrossRefGoogle Scholar
  19. Marton, L., Leder, L. B., and Mendlowitz, H. (1955) Characteristic energy losses of electrons in solids. Advances in Electronics and Electron Physics VII, Academic Press, New York, pp. 183 - 238.Google Scholar
  20. Raether, H. (1965) Solid State Excitations by Electrons. Springer Tracts in Modern Physics, Vol. 38, Springer-Verlag, Berlin, pp. 84 - 157.Google Scholar
  21. Daniels, J., Festenberg, C. V., Raether, H., and Zeppenfeld, K. (1970) Optical constants of solids by electron spectroscopy. Springer Tracts in Modern Physics, Springer-Verlag, New York, Vol. 54, pp. 78 - 135.Google Scholar
  22. Raether, H. (1980) Excitation of Plasmons and Interband Transitions by Electrons. Springer Tracts in Modern Physics, Vol. 88, Springer-Verlag, New York.Google Scholar
  23. Schattschneider, P. (1986) Fundamentals of Inelastic Electron Scattering, Springer-Verlag, Vienna.CrossRefGoogle Scholar
  24. Reimer, L. (editor) (1995) Energy-Filtering Transmission Electron Microscopy. Springer Series in Optical Sciences, Vol. 71, Springer-Verlag, Berlin.Google Scholar
  25. Spence, J. C. H., and Zuo, J. M. (1992) Electron Microdiffraction. Plenum Press, New York. Spence, J. C. H., Reese, G., Yamamoto, N., and Kurizki, G. (1983) Coherent bremsstrahlung peaks in x-ray microanalysis spectra, Phil. Mag. B48, L39 — L43.Google Scholar
  26. Su, D. S., Wang, H. F., and Zeitler, E. (1995) The influence of plural scattering on EELS elemental analysis. Ultramicroscopy, 59. 181 - 190.CrossRefGoogle Scholar
  27. Zaluzec, N.J. (1992) Electron energy loss spectroscopy of advanced materials. In Transmission Electron Energy Loss Spectroscopy in Materials Science, ed. M. M. Disko, C. C. Ahn, and B. Fulz, The Metals Society, Warrendale, Pennsylvania, pp. 241 - 266.Google Scholar
  28. Ibach, H., and Mills, D. L. (1982) Electron Energy-Loss Spectroscopy and Surface Vibrations, Academic Press, New York.Google Scholar
  29. Fink, M., and Kessler, J. (1967) Absolute measurements of elastic cross section for small-angle scattering of electrons from N2 and 02. J. Chem. Phys. 47, 1780 - 1782.CrossRefGoogle Scholar
  30. Hitchcock, A. P. (1989) Electron-energy-loss-based spectroscopies: a molecular viewpoint. Ultramicroscopy 28, 165 - 183.CrossRefGoogle Scholar
  31. Hirsch, P. B., Howie, A., Nicholson, R. B., Pashley, D. W., and Whelan, M. J. (1977) Electron Microscopy of Thin Crystals, Krieger, Huntington, New York.Google Scholar
  32. Bracewell, R. N. (1978) The Fourier Transform and its Applications. McGraw-Hill, New York. Bravman, J. C., and Sinclair, R. (1984) The preparation of cross-section specimens for transmission electron microscopy. J. Electron Microscope Technique 1, 53 - 61.Google Scholar
  33. Ostyn, K. M., and Carter, C. B. (1982) Effects of ion-beam thinning on the structure of NiO. In Electron Microscopy-1982, 10th Int. Cong., Deutsche Gesellschaft für Elektronenmikroskopie, Part 1, pp. 191 - 192.Google Scholar
  34. Okamoto, J. K., Ahn, C. C. and Fultz, B. (1991) EXELFS analysis of Al, Fe L23 and Pd M45 edges. In Microbeam Analysis-1991, ed. D. G. Howitt, San Francisco Press, San Francisco, pp. 273 - 277.Google Scholar
  35. Ball, M. D., Malis, T. F., and Steele, D. (1984) Ultramicrotomy as a specimen preparation technique for analytical electron microscopy. In Analytical Electron Microscopy-1984, ed. D. B. Williams and D. C. Joy, San Francisco Press, San Francisco, pp. 189 - 192.Google Scholar
  36. Salisbury, I. G., Timsit, R. S., Berger, S. D., and Humphreys, C. J. (1984) Nanometer scale electron beam lithography in inorganic materials. Appl. Phys. Lett. 45, 1289 - 1291.CrossRefGoogle Scholar
  37. Tucker, D. S., Jenkins, E. J., and Hren, J. J. (1985) Sectioning spherical aluminum oxide particles for transmission electron microscopy. J. Electron Microscope Tech. 2, 29 - 33.CrossRefGoogle Scholar
  38. Hines, R. L. (1975) Graphite crystal film preparation by cleavage. J. Microsc. 104, 257 - 261.CrossRefGoogle Scholar
  39. McCaffrey, J. P. (1993) Improved TEM samples of semiconductors prepared by a small-angle cleavage technique. Microsc. Res. Technique 24, 180 - 184.CrossRefGoogle Scholar
  40. Moharir, A. V., and Prakash, N. (1975) Formvar holey films and nets for electron microscopy. J. Phys. E 8, 288 - 290.PubMedCrossRefGoogle Scholar
  41. Reichelt, R., and Engel, A. (1984) Monte-Carlo calculations of elastic and inelastic electron scattering in biological and plastic materials. Ultramicroscopy 13, 279 - 294.CrossRefGoogle Scholar
  42. Baumeister, W., and Hahn, M. (1976) An improved method for preparing single-crystal specimen supports: H202 exfoliation of vermiculite. Micron 7, 247 - 251.Google Scholar
  43. Chen, C. H., Silcox, J., and Vincent, R. (1975) Electron energy losses in silicon: Bulk and surface plasmons and Cerenkov radiation. Phys. Rev. B 12, 64 - 71.CrossRefGoogle Scholar
  44. Craven, A. J., Cluckie, M. M., Duckworth, S. P., and Baker, T. N. (1989) Analysis of small vanadium carbide precipitates using electron energy loss spectroscopy. Ultramicroscopy 28, 330 - 334.CrossRefGoogle Scholar
  45. Tatlock, G. J., Baxter, A. G., Devenish, R. W., and Hurd, T. J. (1984) EELS analysis of extracted particles from steels. In Analytical Electron Microscopy-1984, ed. D. B. Williams and D. C. Joy, San Francisco Press, San Francisco, pp. 227 - 230.Google Scholar

Copyright information

© Springer Science+Business Media New York 1996

Authors and Affiliations

  • R. F. Egerton
    • 1
  1. 1.University of AlbertaEdmontonCanada

Personalised recommendations