Advertisement

Electrocatalysis Using Electroactive Polymer Films

  • Michael E. G. Lyons
Chapter

Abstract

In Chapter 2 we discuss the use of electroactive polymer films in the important area of electrocatalysis. The material presented is also relevant for the quantitative description of the operation of amperometric chemical and biological sensors. In the latter context, the efficient operation of the amperometric sensor depends largely on how readily the polymer layer enhances the rate of substrate oxidation or reduction. This of course is related to electrocatalytic properties of the polymer film.

Keywords

Concentration Polarization Reaction Layer Rotate Disk Electrode Case Diagram Mediate Electron Transfer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. R. Hillman, in Electrochemical Science and Technology of Polymers (R. G. Linford, ed.) (Elsevier, Amsterdam, 1987), pp. 103–239. A. R. Hillman, in Electrochemical Science and Technology of Polymers ( R. G. Linford, ed.) ( Elsevier, Amsterdam, 1987 ), pp. 241–91.Google Scholar
  2. 2.
    M. E. G. Lyons, Ann. Rep. Prog. Chem. Sect. C Phys. Chem. 87, 119 (1990).Google Scholar
  3. 3.
    R. W. Murray, in Electroanalytical Chemistry, vol. 13 (A. J. Bard, ed.) (Marcel Dekker, New York 1984), pp. 191–368. R. W. Murray, Ann. Rev. Mater. Sci. 14, 145 (1984). R. W. Murray, in Molecular Design of Electrode Surfaces (R. W. Murray, ed.) (Techniques of Chemistry Series, vol. 22 ( Wiley Interscience, New York, 1992 ), pp. 1–48.Google Scholar
  4. 4.
    W. J. Albery and A. R. Hilman, Ann. Rep. Prog. Chem. Sect. C Phys. Chem. 78, 377 (1981).Google Scholar
  5. 5.
    S. A. Wring and J. P. Hart, Analyst 117, 1215 (1992).Google Scholar
  6. 6.
    H. D. Abruna, Coord. Ch. Rev. 86, 135 (1988). H. D. Abruna, in Electroresponsive Molecular and Polymeric Systems, vol. 1(T. A. Skotheim, ed.) ( Marcel Dekker, New York, 1988 ), pp. 98–160.Google Scholar
  7. 7.
    M. Kaneko and D. Wohrle, Adv. Polym. Sci. 84, 140 (1988).Google Scholar
  8. 8.
    R. W. Murray, Acc. Chem. Res. 13, 135 (1980).Google Scholar
  9. 9.
    M. S. Wrighton, Acc. Chem. Res. 12, 303 (1979).Google Scholar
  10. 10.
    C. P. Andrieux and J. M. Saveant, in Molecular Design of Electrode Surfaces (R. W. Murray, ed.) (Techniques of Chemistry Series, vol. 22 ( Wiley Interscience, New York, 1992 ), pp. 207–70.Google Scholar
  11. 11.
    W. J. Albery and A. R. Hillman, J. Electroanal. Chem. 170, 27 (1984).Google Scholar
  12. 12.
    R. A. Bull, F. R. Fan, and A. J. Bard, J. Elchem. So. 130, 16–36 (1983).Google Scholar
  13. 13.
    S. Holdcroft and B. L. Funt, J. Electroanal. Chem. 240, 89 (1988).Google Scholar
  14. 14.
    K. M. Kost, D. E. Bartak, B. Kazee, and Y. Kuwana, Anal. Chem. 60, 2379 (1988).Google Scholar
  15. 15.
    A. Yassar, J. Roncali, and F. Gamier, J. Electroanal. Chem. 225, 53 (1988).Google Scholar
  16. 16.
    F. T. A. Vork, L. J. J. Janssen, and E. Barendrecht, Electrochim. Acta. 31, 1569 (1986).Google Scholar
  17. 17.
    E. W. Paul, A. G. Ricco, and M. S. Wrighton, J. Phys. Chem. 89, 1441 (1985).Google Scholar
  18. 18.
    G. Tourillion and F. Gamier, J. Phys. Chem. 88, 5281 (1984); G. Tourillion, E. Dartyge, H. Dexpert, A. Fountaine, A. Jucha, P. Lagarde, and D. E. Sayers, J. Electroanal. Chem. 178, 366 (1984).Google Scholar
  19. 19.
    P. Ocon Esteban, J. M. Leger, C. Lamy, and E. Genies, J. Appl. Electrochem. 19, 462 (1989).Google Scholar
  20. 20.
    Y. Takasu, Y. Fujii, K. Yasuda, Y. Iwanaga, and Y. Matsuda, Electrochim. Acta. 34, 453 (1989).Google Scholar
  21. 21.
    P. N. Bartlett and R. G. Whitaker, J. Electroanal. Chem. 224, 27 (1987).Google Scholar
  22. 22.
    P. N. Bartlett and R. G. Whitaker, J. Electroanal. Chem. 224, 37 (1987).Google Scholar
  23. 23.
    P. N. Bartlett, P. Tebbutt, and C. H. Tyrrell, Anal. Chem. 64, 138 (1992).Google Scholar
  24. 24.
    N. C. Foulds and C. R. Lowe, Anal. Chem. 60, 24–73 (1988); N. C. Foulds, and C. R. Lowe, J. Chem. Soc. Faraday Trans. I. 82, 12–59 (1986).Google Scholar
  25. 25.
    A. Michas, J. M. Kelly, R. Durand, M. Pineri, and J. M. D. Coey, J. Membr. Sci. 29, 239 (1986).Google Scholar
  26. 26.
    K. Itaya, H. Takahashi, and J. Uchida, J. Electroanal. Chem. 208, 373 (1986).Google Scholar
  27. 27.
    W. H. Kao and T. Kuwana, J. Am. Chem. Soc. 106, 473 (1984).Google Scholar
  28. 28.
    D. E. Bartak, B. Kazee, K. Shimazu, and T. Kuwana, Anal. Chem. 58, 2756 (1986).Google Scholar
  29. 29.
    H. Y. Liu and F. C. Anson, J. Electroanal. Chem. 158, 181 (1983).Google Scholar
  30. 30.
    R. N. Dominey, N. S. Lewis, J. A. Bruce, D. C. Bookbinder, and M. S. Wrighton, J. Am. Chem. Soc. 104, 476 (1982).Google Scholar
  31. 31.
    J. A. Bruce, T. Murashi, and M. S. Wrighton, J. Phys. Chem. 86, 15–52 (1982).Google Scholar
  32. 32.
    R. A. Simon, T. E. Mallouk, K. A. Daube, and M. S. Wrighton, Inorg. Chem. 24, 3119 (1985).Google Scholar
  33. 33.
    D. J. Harrison and M. S. Wrighton, J. Phys. Chem. 88, 39–32 (1984).Google Scholar
  34. 34.
    M. E. G. Lyons, D. E. McCormack, and P. N. Bartlett, J. Electroanal. Chem. 261, 51 (1989).Google Scholar
  35. 35.
    M. E. G. Lyons, D. E. McCormack, O. Smyth, and P. N. Bartlett, Faraday Discuss. Chem. Soc. 88, 139 (1989).Google Scholar
  36. 36.
    M. E. G. Lyons and P. N. Bartlett, J. Electroanal. Chem. 316, 1 (1991).Google Scholar
  37. 37.
    M. E. G. Lyons, C. H. Lyons, A. Michas, and P. N. Bartlett, Analyst 117, 1271 (1992).Google Scholar
  38. 38.
    W. J. Albery, Electrode Kinetics ( Clarendon Press, Oxford, England, 1975 ), pp. 49–81.Google Scholar
  39. 39.
    Southampton Electrochemistry Group, Instrumental Methods in Electrochemistry ( Ellis Horwood, Chichester, England, 1985 ), pp. 113–48.Google Scholar
  40. 40.
    W. J. Albery, M. J. Eddowes, H. A. O. Hill, and A. R. Hillman, J. Am. Chem. Soc. 103, 3904 (1981).Google Scholar
  41. 41.
    L. Gorton, A. Torstenssen, H. Jaegfeldt, and G. Johansson, J. Electroanal. Chem. 161, 103 (1984).Google Scholar
  42. 42.
    L. Gorton, G. Johansson, and A. Torstensson, J. Electroanal. Chem. 196, 81 (1985).Google Scholar
  43. 43.
    L. Gorton, J. Chem. Soc. Faraday Trans. 1 86 1245 (1986).Google Scholar
  44. 44.
    W. J. Albery and P. N. Bartlett, J. Chem. Soc. Chem. Commun. 234 (1984).Google Scholar
  45. 45.
    W. J. Albery, P. N. Bartlett, and D. H. Craston, J. Electroanal. Chem. 194, 235 (1985).Google Scholar
  46. 46.
    J. Kulys and A. Drungiliene, Electroanal 3, 209 (1991).Google Scholar
  47. 47.
    W. J. Albery and P. N. Bartlett, J. Electroanal. Chem. 194, 211 (1985).Google Scholar
  48. 48.
    M. Sharp, B. Lindholm, and E. Lotta-Lind, J. Electroanal. Chem. 274, 35 (1989).Google Scholar
  49. 49.
    M. E. G. Lyons, C. H. Lyons, A. Michas, and P. N. Bartlett, J. Electroanal. Chem. in press.Google Scholar
  50. 50.
    A. Ault, J. Chem. Ed. 51, 381 (1974).Google Scholar
  51. 51.
    W. J. Albery and J. R. Knowles, Biochem. 15, 5631, 5588 (1976).Google Scholar
  52. 52.
    C. P. Andrieux and J. M. Savéant, J. Electroanal. Chem. 93, 163 (1978).Google Scholar
  53. 53.
    C. P. Andrieux, J. M. Dumas-Bouchiat, and J. M. Savéant, J. Electroanal. Chem. 114, 159 (1980).Google Scholar
  54. 54.
    C. P. Andrieux, J. M. Dumas-Bouchiat, and J. M. Savéant, J. Electroanal. Chem. 131, 1 (1982).Google Scholar
  55. 55.
    C. P. Andrieux and J. M. Savéant, J. Electroanal. Chem. 139, 163 (1982).Google Scholar
  56. 56.
    C. P. Andrieux, J. M. Dumas-Bouchiat, and J. M. Savéant, J. Electroanal. Chem. 169, 9 (1984).Google Scholar
  57. 57.
    C. P. Andrieux and J. M. Savéant, J. Electroanal. Chem. 171, 65 (1984).Google Scholar
  58. 58.
    C. P. Andrieux, in Electrochemistry, Sensors, and Analysis ( M. R. Smyth and J. G. Vos. eds.) ( Elsevier, Amsterdam, 1986 ), pp. 235–45.Google Scholar
  59. 59.
    J. Leddy, A. J. Bard, J. T. Maloy, and J. M. Savéant, J. Electroanal. Chem. 187, 205 (1985).Google Scholar
  60. 60.
    R. D. Rocklin and R. W. Murray, J. Phys. Chem. 85, 2104 (1981).Google Scholar
  61. 61.
    R. W. Murray, Phil. Trans. Roy. Soc. 302, 253 (1981).Google Scholar
  62. 62.
    F. C. Anson, J. Phys. Chem. 84, 3336 (1980).Google Scholar
  63. 63.
    E. Laviron, J. Electroanal. Chem. 112, 1 (1980).Google Scholar
  64. 64.
    C. Daul and O. Haas, in Electrochemistry Sensors and Analysis ( M. R. Smyth and J. G. Vos, eds.) ( Elsevier, Amsterdam, 1986 ), pp. 277–84.Google Scholar
  65. 65.
    E. Deiss, O. Haas, and C. Daul, J. Electroanal. Chem. 337, 299 (1992).Google Scholar
  66. 66.
    J. F. Cassidy and J. G. Vos, Electroanal. Chem. 235, 41 (1987).Google Scholar
  67. 67.
    E. T. Turner Jones and L. R. Faulkner, J. Electroanal. Chem. 222, 201 (1987).Google Scholar
  68. 68.
    M. Sharp, J. Electroanal. Chem. 230, 109 (1987).Google Scholar
  69. 69.
    S. Dong and G. Che, J. Electroanal. Chem. 309, 103 (1991).Google Scholar
  70. 70.
    M. E. G. Lyons, P. N. Bartlett, C. H. Lyons, W. Breen, and J. F. Cassidy, J. Electroanal. Chem. 304, 1 (1991).Google Scholar
  71. 71.
    K. Aoki, K. Tokuda, and H. Matsuda, J. Electroanal. Chem. 199, 69 (1986).Google Scholar
  72. 72.
    C. Deslouis, M. M. Musiani, and B. Tribollet, J. Electroanal. Chem. 264, 37 (1989).Google Scholar
  73. 73.
    J. M. Savéant, J. Electroanal. Chem. 302, 91 (1991).Google Scholar
  74. 74.
    O. Haas and B. Sandmier, J. Phys. Chem. 91, 5072 (1987).Google Scholar
  75. 75.
    R. J. Forster and J. G. Vos, J. Chem. Soc. Faraday Trans. 87, 1863 (1991).Google Scholar
  76. 76.
    M. E. G. Lyons and H. G. Fay, J. Electroanal. Chem. in press.Google Scholar
  77. 77.
    R. J. Forster, J. G. Vos, and M. E. G. Lyons, J. Chem. Soc. Faraday Trans. 87, 3761 (1991).Google Scholar
  78. 78.
    R. J. Forster, J. G. Vos, A. J. Kelly, and M. E. G. Lyons, J. Electroanal. Chem. 270, 365 (1989).Google Scholar
  79. 79.
    W. J. Albery, M. G. Bouteille, P. J. Colby, and A. R. Hillman, J. Electroanal. Chem. 133, 135 (1982).Google Scholar
  80. 80.
    C. P. Andrieux, O. Haas, and J. M. Savéant, J. Am. Chem. Soc. 108, 8175 (1986).Google Scholar
  81. 81.
    M. E. G. Lyons, H. G. Fay, T. McCabe, J. Corish, J. G. Vos, and A. J. Kelly, J. Chem. Soc. Faraday Trans. 86, 2905 (1990).Google Scholar
  82. 82.
    J. M. Engasser and C. Horvath, in Applied Biochemistry and Bioengineering: Immobilized Enzyme Principles vol. 1 (L. Wingrad, E. Katchalski-Katzir, and L. Goldstein, eds.) (Academic, New York, 1976 ), pp. 127–221.Google Scholar
  83. 83.
    J. M. Engasser and C. Horvath, BiotechnoL Bioeng. 16, 909 (1974).Google Scholar
  84. 84.
    R. Aris, The Mathematical Theory of Diffusion and Reaction in Permeable Catalysts (Clarendon Press, Oxford, England, 1975) 2 vols.Google Scholar
  85. 85.
    W. J. Albery, A. E. G. Cass, and Z. H. Shu, Biosens. Bioelectron. 5, 367 (1990).Google Scholar
  86. 86.
    M. E. G. Lyons, D. E. McCormack, A. Michas, C. H. Lyons, and P. N. Bartlett, Key Eng. Mater. 72/74, 477 (1992).Google Scholar
  87. 87.
    M. E. G. Lyons and L. D. Burke, J. Chem. Soc. Faraday Trans. 83, 299 (1987).Google Scholar
  88. 88.
    G. W. Jong, E. W. Tsai, and K. Rajeshwar, J. Elchem. So. 134, 2377 (1987).Google Scholar
  89. 89.
    P. N. Bartlett, P. Tebbutt, and R. G. Whitaker, Prog. React. Kinet. 16, 55 (1991).Google Scholar
  90. 90.
    P. N. Bartlett, Z. Ali, and V. Eastwick-Field, J. Chem. Soc. Faraday Trans. 88, 2677 (1992).Google Scholar
  91. 91.
    K. Yokoyama, E. Tamiya, and I. Karube, J. Electroanal. Chem. 273, 107 (1989).Google Scholar
  92. 92.
    E. Liaudet, F. Battaglini, and E. J. Calvo, J. Electroanal. Chem. 293, 55 (1990).Google Scholar
  93. 93.
    W. J. Albery, P. N. Bartlett, B. J. Driscoll, and R. B. Lennox, J. Electroanal Chem. 323, 77 (1992).Google Scholar
  94. 94.
    L. D. Mell and J. T. Maloy, Anal. Chem. 47, 299 (1975).Google Scholar
  95. 95.
    P. N. Bartlett, personal communication.Google Scholar
  96. 96.
    T. Tatsuma and T. Watanabe, Anal. Chem. 64, 625 (1992).Google Scholar
  97. 97.
    T. Tatsuma, T. Watanabe, and Y. Okawa, Anal. Chem. 64, 630 (1992).Google Scholar
  98. 98.
    G. K. Chandler and D. Pletcher, J. Appt Electrochem. 16, 62 (1986).Google Scholar
  99. 99.
    J. Y. Lee and T. C. Tan, J. Elchem. So. 137, 1402 (1990).Google Scholar
  100. 100.
    F. T. A. Vork and B. Barendrecht, Synth. Met. 28, C121 (1989).Google Scholar
  101. 101.
    F. T. A. Vork and B. Barendrecht, Electrochim. Acta 35, 135 (1990).Google Scholar
  102. 102.
    D. Belanger, E. Brassard, and G. Fortier, Anal. Chim. Acta 228, 311 (1990).Google Scholar
  103. 103.
    D. J. Strike, N. F. De Rooij, M. Koudelka-Hep, M. Ulmann, and J. Augustynski, J. Appl. Electrochem. 22, 922 (1992).Google Scholar
  104. 104.
    A. Aramata, T. Kodera, and M. Matsuda, J. Appl. Electrochem. 18, 577 (1988).Google Scholar
  105. 105.
    H. Laborde, J. M. Leger, C. Lamy, F. Gamier, and A. Yassar, J. Appl. Electrochem. 20, 524 (1990).Google Scholar
  106. 106.
    M. Gholamirn and A. Q. Contractor, J. Electroanal. Chem. 281, 69 (1990).Google Scholar
  107. 107.
    A. Aramata and R. Ohnishi, J. Electroanal. Chem. 162, 153 (1984).Google Scholar
  108. 108.
    W. J. Albery and P. N. Bartlett, J. Electroanal. Chem. 131, 137 (1982).Google Scholar

Copyright information

© Springer Science+Business Media New York 1994

Authors and Affiliations

  • Michael E. G. Lyons
    • 1
  1. 1.Physical Chemistry Laboratory, Trinity CollegeUniversity of DublinDublin 2Ireland

Personalised recommendations