Advertisement

Navier-Stokes Dynamics

  • George R. Sell
  • Yuncheng You
Part of the Applied Mathematical Sciences book series (AMS, volume 143)

Abstract

Longtime dynamical issues arise in many areas in the world about us. For example, one finds them in various fluid flows as illustrated by 1) heat transfer and its effects on global climate modeling and weather prediction; 2) flows of multiphased fluids and oil recovery; 3) behavior of chemical solutes in lakes, harbors and river basins; 4) geothermal consequences of magma flows; and 5) fluid flows in thin films. In order to understand the modeling of such phenomena, one needs good mathematical tools coupled with sound insight into the physics and the chemistry of the problems.

Keywords

Weak Solution Strong Solution Mild Solution Global Attractor Young Inequality 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Additional Readings

  1. J M Ball (1973), Saddle point analysis for an ordinary differential equation in a Banach space and an application to dynamic buckling of a beam, Nonlinear Elasticity, R W Dickey, ed, Academic Press, New York, pp. 93–160.Google Scholar
  2. P Constantin and C Foias (1988), Navier-Stokes Equations, Univ Chicago Press, Chicago.MATHGoogle Scholar
  3. A Douady and J Oesterlé (1980), Dimension de Hausdorff des attracteurs,C R Acad Sci Paris, Ser A 290, 1135–1138.Google Scholar
  4. C Foias, See Chen, Foias, Holm, Olson,Titi, and Wynne; Constantin and Foias; Constantin, Foias, and Temam; Constantin, Foias, Nicolaenko, and Temam; Eden, Foias, and Nicolaenko; Eden, Foias, Nicolaenko,and Temam; Eden, Foias, and Temam; and Sz Nagy and Foias.Google Scholar
  5. C Foias, D D Holm, and E S Titi (2002), The three dimensional viscous Camassa-Holm equations,and their relation to the Navier-Stokes equations and turbulence theory,J Dynamics Differential Equations 14.Google Scholar
  6. R Marié (1987), A proof of the C 1 stability conjecture,Inst Hautes Sci Publ Math, No 66, 161–210.Google Scholar
  7. G Prodi, See Foias and Prodi.Google Scholar
  8. S Taylor (1980), Gevrey Semigroups Univ Minnesota PhD Thesis.Google Scholar
  9. R Temam, See Constantin, Foias, and Temam, Constantin, Foias, Nicolaenko, and Temam; Eden, Foias, Nicolaenko, and Temam; Eden, Foias and Temam; Foias, Manley, Rosa, and Temam; Foias, Manley, and Temam; Foias, Manley, Temam, and Treve; Foias, Nicolaenko, Sell, and Temam; Foias, Nicolaenko, and Temam; Foias and Temam; Foias, Sell, and Temam; Ghidaglia and Temam; Jolly, Rosa and Temam; Manley, Marion and Temam; Nicolaenko, Sheurer and Temam; and Rosa and Temam.Google Scholar
  10. E Gagliardo (1959), Ulteriori proprietd di alcune classi di funzioni in piu variabili,Ricerche di Mat 8, 24–51.Google Scholar
  11. G P Galdi (1994), An Introduction to the Mathematical Theory of the Navier-Stokes Equations, Vol I and II, Springer Tracts in Natural Philosophy, Springer Verlag, New York.Google Scholar
  12. M Grobbelar-van Dalsen and N Sauer (1989), Dynamic boundary conditions for the Navier-Stokes equations,Proc Roy Soc Edinburgh 113, 1–11.Google Scholar
  13. M Grobbelar-van Dalsen and N Sauer (1993), Solutions in Lebesgue spaces of the NavierStokes equations with dynamic boundary conditions,Proc Roy Soc Edinburgh 123, 745–761.Google Scholar
  14. J K Hale (1988), Asymptotic Behavior of Dissipative Systems, Mathematical Surveys and Monographs, Vol 25, Am Math Soc, Providence.Google Scholar
  15. E Hopf (1951), Ober die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen,Math Nachr 4, 213–231.Google Scholar
  16. K Kirchgässner (1975), Bifurcation in nonlinear hydrodynamic stability,SIAM Rev 17, 652–683.Google Scholar
  17. M Kwak (1992a), Finite dimensional behavior of convective reaction diffusion equations, J Dynamics Differential Equations 4, 515–543.MathSciNetMATHCrossRefGoogle Scholar
  18. M Kwak (1992b), Finite dimensional inertial forms for the 2D Navier-Stokes equations,Indiana J Math 41, 927–981.Google Scholar
  19. O A Ladyzhenskaya (1963), The Mathematical Theory of Viscous Incompressible Flow, Gordon and Breach, New York.MATHGoogle Scholar
  20. O A Ladyzhenskaya (1972), On the dynamical system generated by the Navier-Stokes equations,English translation, J Soviet Math 3, 458–479.Google Scholar
  21. O A Ladyzhenskaya (1987), On the determination of minimal global attractors for the Navier-Stokes and other partial differential equations,English translation, Russian Math Surveys 42, 27–73.Google Scholar
  22. O A Ladyzhenskaya (1991), Attractors for Semigroups and Evolution Equations, Cambridge Univ Press, Cambridge.MATHCrossRefGoogle Scholar
  23. J Leray (1933), Etude de diverses équations intégrales nonlinéaires et de quelques problèmes que pose l’hydrodynamique,J Math Pures Appl 12, 1–82.Google Scholar
  24. J Leray (1934a), Essai sur les mouvement plans d’un liquide visqueux que limitent des parois, J Math Pures Appl 13, 331–418.Google Scholar
  25. J Leray (1934b), Sur le mouvement d’un liquide visqueux emplissant l’espace,Acta Math 63,193–248.Google Scholar
  26. J L Lions (1962), Problèmes aux Limites dans les Equations aux Dérivées Partielles, Seminaire de Math Sup, Univ de Montréal.Google Scholar
  27. E Magenes, See Lions and Magenes.Google Scholar
  28. J K Hale and G Raugel (1992c), Convergence in gradient-like systems and applications, ZAMP 43, 63–124.MathSciNetMATHCrossRefGoogle Scholar
  29. J K Hale and G Raugel (1992d), Dynamics of partial differential equations on thin domains,Preprint.Google Scholar
  30. J K Hale and G Raugel (1995), A reaction diffusion equation on a thin L-shaped domain,Proc Roy Soc Edinburgh, Sect A 125, 283–327.Google Scholar
  31. J K Hale and K Sakamoto (1989), Shadow systems and attractors in reaction diffusion equations,Appl Anal 32, 287–303.Google Scholar
  32. R Salvi (1988), Some problems for nonhomogeneous fluids with time dependent domains and convex sets Math Z 199, 153–170.Google Scholar
  33. R Salvi (1990), On the Navier-Stokes equations in noncylindrical domains: on the existence and regularity, Rend Accad Naz Sci XL Mem Mat 14, 87–105.Google Scholar
  34. N Sauer (1988), The steady state Navier-Stokes equations with rotating boundaries Proc Roy Soc Edinburgh 110, 93–99.Google Scholar
  35. G R Sell (1981a), A remark on an example of R A Johnson Proc Am Math Soc 82, 206–208.Google Scholar
  36. G R Sell (1981b), Hopf-Landau bifurcation near strange attractors, Chaos and Order in Nature, Ed: H Haken, Springer Verlag, Berlin, pp. 84–91.CrossRefGoogle Scholar
  37. G R Sell (1996), Global attractors for the three dimensional Navier-Stokes equations J Dynamics Differential Equations 8, 1–33.Google Scholar
  38. J Serrin (1959). Mathematical principles of classical fluid mechanics, Handbuch der Physik, Springer Verlag, Berlin, pp. 125–263.Google Scholar
  39. J Serrin (1962), On the interior regularity of weak solutions of the Navier-Stokes equations Arch Rational Mech Anal 9, 187–195.Google Scholar
  40. V E Scadilov, See Solonnikov and Scadilov.Google Scholar
  41. J J Schiffer, See Massera and Schaffer.Google Scholar
  42. R Temam (1977), Navier-Stokes Equations, North-Holland, Amsterdam.MATHGoogle Scholar
  43. R Temam (1982), Behaviour at time t = 0 of the solutions of semilinear evolution equations JDifferential Equations 43, 73–92.Google Scholar
  44. R Temam (1983), Navier-Stokes Equations and Nonlinear Functional Analysis, CBMS Regional Conference Series, No 41, SIAM, Philadelphia.Google Scholar
  45. R Temam (1988), Infinite Dimensional Dynamical Systems in Mechanics and Physics, Applied Mathematical Sciences, Vol 68, Springer Verlag, New York.Google Scholar
  46. W von Wahl, See Deuring and von Wahl.Google Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • George R. Sell
    • 1
  • Yuncheng You
    • 2
  1. 1.School of MathematicsUniversity of MinnesotaMinneapolisUSA
  2. 2.Department of MathematicsUniversity of South FloridaTampaUSA

Personalised recommendations