Biochemical Dynamics in Organized States: A Holistic Approach

  • G. Rickey Welch
Part of the Nato Science Series A: (closed) book series (NSSA, volume 81)


The key word in the title of this conference is “dynamics”. Indeed, this term comes closest to what we might call the defining characteristic of the “living state”.


Intermediary Metabolism Energy Continuum Individual Enzyme Medium Viscosity Complementarity Principle 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Almási A, Fischer E, Perjési P: A simple and rapid ion-pair HPLC method for simultaneous quantitation of 4-nitrophenol and its glucuronide and sulfate conjugates. J. Biochem. Biophys. Methods 69, 43–50 (2006)PubMedCrossRefGoogle Scholar
  2. 2.
    Almási A, Fischer E, Perjési P: Isocratic ion-pair HPLC method for quantitation of 4-nitrophenol and it’s conjugated metabolites from bile. Sci. Pharm. 79, 837–847 (2011)PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Ayrton A, Morgan P: Role of transport proteins in drug absorption, distribution and excretion. Xenobiotica 31, 469–497 (2001)PubMedCrossRefGoogle Scholar
  4. 4.
    Baldwin MK, Selby MA, Bloomberg H: Measurement of phenol in urine by the method of van Haaften and Sie: a critical appraisal. Analyst, 106, 763–767 (1981)PubMedCrossRefGoogle Scholar
  5. 5.
    Barnes S, Buchina ES, King RJ, McBurnett T, Taylor KB: Bile acid sulfotransferase I from rat liver sulfates bile acids and 3-hydroxy steroids: purification, N-terminal amino acid sequence and kinetic properties. J. Lipid Res. 30, 429–440 (1989)Google Scholar
  6. 6.
    Beaumont K (2004): The importance of gut wall metabolism in determining drug bioavailibility. In: Drug Bioavailibility: Estimation of Solubility, Permeability, Absorption and Bioavailibility, eds van de Waterbeemd, Lenneraus H, Artursson P, Willey - VCH Verlag GmbH and Co. KgaA, Weinheim, FRG, Ch. 13, pp. 311–328Google Scholar
  7. 7.
    Capiello M, Franchi M, Giuliani L, Pacifici GM: Distribution of 2-naphthol sulfotransferase and its substrate adenosine 3-phosphate 5-phosphosulfate in human tissues. Eur. J. Clin. Pharmacol. 37, 317.320 (1989)CrossRefGoogle Scholar
  8. 8.
    Capiello M, Giuliani L, Pacifici GM: Distribution of UDP-glucuronyltransferase and its endogenous substrate uridine 5-diphosphoglucuronic acid in human tissues. Eur. J. Pharmacol. 41, 345.350 (1991)Google Scholar
  9. 9.
    Chen G, Battaglia E, Senay C, Falany CN, Radominska-Pandya A: Photoaffinity labeling probe for the substrate binding site of human phenol sulfotransferase (SULT1A1): 7-Azido-4-methylcoumarin. Protein Sci. 8, 2151. 2157 (1999)PubMedCrossRefGoogle Scholar
  10. 10.
    Danovitch SH, Laster R: The development of arylsulfatase in the small intestine of the rat. Biochem. J. 114, 343–350 (1969)Google Scholar
  11. 11.
    Eadsforth CV, Coveney DC: Measurement of phenol in urine using a high-performance liquid chromatographic method. Analyst 109, 175–176 (1984)PubMedCrossRefGoogle Scholar
  12. 12.
    Falany CN: Molecular enzymology of human cytosolic sulfortransferases. Trends Pharmacol. Sci. 12, 255–259 (1991)PubMedCrossRefGoogle Scholar
  13. 13.
    Fischer E, Rafiei A, Bojcsev S: Intestinal elimination of p-nitrophenol in the rat. Acta Physiol. Hung. 83, 355–362 (1995)PubMedGoogle Scholar
  14. 14.
    Fishman WH. (1974): ß-Glucuronidase. In: Methods of Enzymatic Analysis, ed Bergmeyer HU, Academic Press, New York, pp. 929–943CrossRefGoogle Scholar
  15. 15.
    George CF: Drug metabolism by gastrointestinal mucosa. Clin. Pharmacokinet. 6, 259–274 (1981)PubMedCrossRefGoogle Scholar
  16. 16.
    Hartiala KJW: Metabolism of hormones, drugs and other substances by the gut. Physiol. Rev. 53, 496–534 (1973)PubMedGoogle Scholar
  17. 17.
    Hänninen O, Lindström-Seppä P, Pelkonen K: Role of the gut in xenobiotic metabolism. Arch. Toxicol. 60, 34–36 (1987)PubMedCrossRefGoogle Scholar
  18. 18.
    Inoue H, Yokota H, Taniyama H, Kuwahara H, Ogawa H, Kato S, Yuasa A: 1-Naphthol-ß-o-glucuronides formed intraluminally in rat small intestine mucosa and absorbed into the colon. Life Sci. 65, 1579–1588 (1999)PubMedCrossRefGoogle Scholar
  19. 19.
    Koster AS, Noordhoek J: Glucuronidation in the rat intestinal wall. Comparison of isolated mucosal cells, latent microsomes and activated microsomes. Biochem. Pharmacol. 32, 895–900 (1983)Google Scholar
  20. 20.
    Kothare AP, Zimmerman CL: Intestinal metabolism: The role of enzyme localization in phenol metabolite kinetics. Drug Metab. Dispos. 30, 586–594 (2002)PubMedCrossRefGoogle Scholar
  21. 21.
    Kuhn MD, Rost M, Müller D: Para-nitrophenol glucuronidation and sulphatation in rat and human slices. Exp. Toxic. Pathol. 53, 81–87 (2001)CrossRefGoogle Scholar
  22. 22.
    Laitinen M, Watkins JB (1986): Mucosal biotransformations. In: Gastrointestinal Toxicology, eds Rozman K, Hänninen O Elsevier Press, Amsterdam, pp. 169–192Google Scholar
  23. 23.
    Linn LH, Chiba M, Baillie TA: Is the role of the small intestine in first — pass metabolism overemphasized? Pharm. Rev. 51, 135–157 (1999)Google Scholar
  24. 24.
    Liu H, Wu B, Pan G, He L, Li Z, Fan M, Jian L, Chen M, Wang K, Huang C: Metabolism and pharmacokinetics of mangiferin in conventional rats, pseudo-germ-free rats, and streptozotocin-induced diabetic rats. Drug Metab. Dispos. 40, 2109–2118 (2012)PubMedCrossRefGoogle Scholar
  25. 25.
    Maiti S, Grant S, Baker SM, Karanth S, Pope CN, Chen G: Stress regulation of sulfotransferases in male rat liver. Biochem. Biophys. Res. Commun. 323, 235–241 (2004)CrossRefGoogle Scholar
  26. 26.
    Mojarrabi B, Mackenzie PI: Characterization of two UDP glucuronosyltransferases that are predominantly expressed in human colon. Biochem. Biophys. Res. Commun. 247, 704–709 (1998)PubMedCrossRefGoogle Scholar
  27. 27.
    Pang KS, Maeng HJ, Fan J: Interplay of transporters and enzymes in drug and metabolite processing. Mol. Pharm. 6, 1734–1755 (2009)PubMedCrossRefGoogle Scholar
  28. 28.
    Preuksaritonont T, Gorham LM, Hochman JH, Tran LO, Vyas KP: Comparative studies of drug metabolising enzymes in dog, monkey and human small intestines and in Caco-2-cells. Drug Metab. Disp. 24, 634–642 (1996)Google Scholar
  29. 29.
    Rafiei A, Bojcsev S, Fischer E: Dose-dependent intestinal and hepatic glucuronidation and sulfatation of p-nitrophenol in the rat. Acta Physiol. Hung. 84, 333–335 (1996)PubMedGoogle Scholar
  30. 30.
    Schwenk M: Glucuronidation and sulphatation in gastrointestinal tract. Progr. Pharmacol. Clin. Pharmacol. 7, 155–169 (1989)Google Scholar
  31. 31.
    Shiratani H, Katoh M, Nakijama M, Yokoi T: Species differences in UDP-glucuronyltransferase activities in mice and rats. Drug Metab. Disp. 36, 1745–1752 (2008)CrossRefGoogle Scholar
  32. 32.
    Teubner W, Meinl W, Florian S, Kretzschmar M, Glatt H: Identification and localization of soluble sulfotransferases in the human gastrointestinal tract. Biochem. J. 404, 207–215 (2007)PubMedCrossRefGoogle Scholar
  33. 33.
    Tukey RH, Strassburg CP: Human UDP-glucuronosyltransferases: metabolism, expression and disease. Ann. Rev. Pharmacol. Toxicol. 40, 581–616 (2000)CrossRefGoogle Scholar
  34. 34.
    van Norman KH: The biuret reaction and the cold nitric acid test in the recognition of protein. Biochem. J. 4, 127–135 (1909)PubMedGoogle Scholar
  35. 35.
    Wu B, Kulkarni K, Basu S, Zhang S, Hu M: First-pass metabolism via UDP-glucuronosyltransferase: a barrier to oral bioavailability of phenolics. J. Pharm. Sci. 100, 3655–3681 (2011)PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1984

Authors and Affiliations

  • G. Rickey Welch
    • 1
  1. 1.Department of Biological SciencesUniversity of New OrleansNew OrleansUSA

Personalised recommendations