From Excitability and Oscillations to Birhythmicity and Chaos in Biochemical Systems

  • A. Goldbeter
  • J-L. Martiel
  • O. Decroly
Part of the Nato Science Series A: (closed) book series (NSSA, volume 81)


Spontaneous oscillations are one of the most conspicuous properties of living systems (Winfree, 1980). They are seen in the firing patterns of neurons, in beating heart cells, in the wavelike aggregation of cellular slime molds, in circadian rhythms which can persist under constant external conditions, in hormonal cycles which govern reproduction in mammals, and in the periodic evolution of interacting populations of predators and preys.


Adenylate Cyclase Stable Limit Cycle Stable Steady State Sustained Oscillation Unstable Steady State 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alamgir, M. and Epstein, I.R. (1983) J. Am. Chem. Soc. 105, 2500–2501.CrossRefGoogle Scholar
  2. Alcantara, F. and Monk, M. (1974) J. Gen. Microbiol. 85, 321–334.PubMedCrossRefGoogle Scholar
  3. Berridge, M.J. and Rapp, P.E. (1979) J. Exp. Biol. 81, 217–279.PubMedGoogle Scholar
  4. Boiteux, A., Goldbeter, A. and Hess, B. (1975) Proc. Natl. Acad. Sci. USA 72, 3829–3833.PubMedCrossRefGoogle Scholar
  5. Bonner, J.T. (1967) “The Cellular Slime Molds”. Princeton Univ. Press: New Jersey.Google Scholar
  6. Coukell, B. (1981) Differentiation. 20, 29–35.CrossRefGoogle Scholar
  7. Coukell, M.B. and Chan, F.K. (1980) FEBS Lett. 110, 39–42.PubMedCrossRefGoogle Scholar
  8. Darmon, M., Barra, J. and Brachet, P. (1978) J. Cell. Sci. 31, 233–243.PubMedGoogle Scholar
  9. Darmon, M. and Brachet, P. (1978) in “Taxis and Behavior”, Receptors and Recognition, Ser. B, vol. 5 (Ed. G. Hazelbauer) pp. 103–139. Chapman and Hall: London.Google Scholar
  10. Decroly, O. and Goldbeter, A. (1982) Proc. Natl. Acad. Sci. USA 79, 6917–6921.PubMedCrossRefGoogle Scholar
  11. Decroly, O. and Goldbeter, A. (1984) C.R. Acad. Sci. Paris Ser. II, in press.Google Scholar
  12. Degn, H. (1968) Nature 217, 1047–1050.PubMedCrossRefGoogle Scholar
  13. DeHaan, R.L. (1980) in “Current Topics in Developmental Biology”, Vol. 16 (Ed. R.K. Hunt) pp. 117–164. Academic Press: New York.PubMedCrossRefGoogle Scholar
  14. Demongeot, J. and Kellershohn, N. (1983) Lecture Notes in Biomathematics 49, 17–31.CrossRefGoogle Scholar
  15. Devreotes, P.N. and Steck, T.L. (1979) J. Cell Biol. 80, 300–309.PubMedCrossRefGoogle Scholar
  16. Dinauer, M., MacKay, S. and Devreotes, P. (1980) J. Cell Biol. 86, 537–544.PubMedCrossRefGoogle Scholar
  17. Durston, A.J. (1973) J. Theor. Biol. 42, 483–504.PubMedCrossRefGoogle Scholar
  18. Durston, A.J. (1974) Develop. Biol. 38, 308–319.PubMedCrossRefGoogle Scholar
  19. Eschrich, K., Schellenberger, W. and Hofmann, E. (1980) Arch. Biochem. Biophys. 205, 114–121.PubMedCrossRefGoogle Scholar
  20. Europe-Finner, G.N., McClue, S.J. and Newell, P.C. (1984) FEMS Microbiol. Lett. 21, 21–25.PubMedCrossRefGoogle Scholar
  21. Feigenbaum, M.J. (1978) J. Stat. Phys. 19, 25–52.CrossRefGoogle Scholar
  22. Fessard, A. (1936) “Proprietes Rythmiques de la Matiere Vivante”, Actualites Scientifiques et Industrielles 417. Hermann: Paris.Google Scholar
  23. Field, R.J., Körös, E. and Noyes, R.M. (1972) J. Am. Chem. Soc. 94, 8649–8664CrossRefGoogle Scholar
  24. Fitzhugh, R. (1961) Biophys. J. 1, 445–466.PubMedCentralPubMedCrossRefGoogle Scholar
  25. Frenkel, R. (1968) Arch. Biochem. Biophys. 125, 151–156.PubMedCrossRefGoogle Scholar
  26. Geller, J. and Brenner, M. (1978) Biochem. Biophys. Res. Commun. 81, 814–821.PubMedCrossRefGoogle Scholar
  27. Gerisch, G. (1963) “Entwicklung von Dictyostelium”, Film C876T. Institut fur den Wissenschaftlichen Film: Gottingen.Google Scholar
  28. Gerisch, G. (1968) Curr. Top. Devel. Biol. 3, 157–197.CrossRefGoogle Scholar
  29. Gerisch, G. (1982) Annu. Rev. Physiol. 44, 535–552.PubMedCrossRefGoogle Scholar
  30. Gerisch, G. and Hess, B. (1974) Proc. Natl. Acad. Sci. USA 71, 2118–2122.PubMedCrossRefGoogle Scholar
  31. Gerisch, G., Malchow, D., Roos, W. and Wick, U. (1979) J. Exp.-Biol. 81, 33–47.PubMedGoogle Scholar
  32. Gerisch, G. and Wick, U. (1975) Biochem. Biophys. Res. Commun. 65, 364–370.PubMedCrossRefGoogle Scholar
  33. Ghosh, A. and Chance, B. (1964) Biochem. Biophys. Res. Commun. 16, 174–181.PubMedCrossRefGoogle Scholar
  34. Gingle, A.R. and Robertson, A. (1976) J. Cell Sci. 20, 21–27.PubMedGoogle Scholar
  35. Glass, L. and Mackey, M.C. (1979) Ann. N.Y. Acad. Sci. 316, 214–235.PubMedCrossRefGoogle Scholar
  36. Glazer, P.M. and Newell, P.C. (1981) J. Gen. Microbiol. 125, 221–232.Google Scholar
  37. Goldbeter, A. (1975) Nature 253, 540–542.PubMedCrossRefGoogle Scholar
  38. Goldbeter, A. (1980) in “Mathematical Models in Molecular and Cellular Biology” (Ed. L.A. Segel) pp. 248–291. Cambridge Univ. Press.Google Scholar
  39. Goldbeter, A. and Caplan, S.R. (1976) Annu. Rev. Biophys. Bioeng. 5, 449–476.PubMedCrossRefGoogle Scholar
  40. Goldbeter, A. and Decroly, O. (1983) Am. J. Physiol. (Regul. Integr. Comp. Physiol. 14) 245, R478–R483.Google Scholar
  41. Goldbeter, A. and Erneux, T. (1978) C.R. Acad. Sci. Paris. 286 C, 63–66.Google Scholar
  42. Goldbeter, A., Erneux, T. and Segel, L.A. (1978) FEBS Lett. 89, 237–241.PubMedCrossRefGoogle Scholar
  43. Goldbeter, A. and Koshland Jr., D.E. (1982) J. Mol. Biol. 161, 395–416.PubMedCrossRefGoogle Scholar
  44. Goldbeter, A. and Lefever, R. (1972) Biophys. J. 12, 1302–1315.PubMedCentralPubMedCrossRefGoogle Scholar
  45. Goldbeter, A. and Martiel, J.L. (1980) Fed. Proc. 39, 1804.Google Scholar
  46. Goldbeter, A. and Martiel, J.L. (1983) Lecture Notes in Biomathematics 49, 173–188.CrossRefGoogle Scholar
  47. Goldbeter, A. and Nicolis, G. (1976) in “Progress in Theoretical Biology” (Eds. F. Snell and R. Rosen), vol. 4, pp. 65–160, Academic Press: New York.Google Scholar
  48. Goldbeter, A. and Segel, L.A. (1977) Proc. Natl. Acad. Sci. USA 74, 1543–1547.PubMedCrossRefGoogle Scholar
  49. Goldbeter, A. and Segel, L.A. (1980) Differentiation 17, 127–135.PubMedCrossRefGoogle Scholar
  50. Goldbeter, A. and Venieratos, D. (1980) J. Mol. Biol. 138, 137–144.PubMedCrossRefGoogle Scholar
  51. Van Haastert, P.J.M. and Van der Heijden, P.R. (1983) J. Cell Biol. 96, 347–353.PubMedCrossRefGoogle Scholar
  52. Heidmann, T. and Changeux, J.P. (1978) Annu. Rev. Biochem. 47, 317–357.PubMedCrossRefGoogle Scholar
  53. Hers, H.G. and van Schaftingen, E. (1982) Biochem. J. 206, 1–12.PubMedGoogle Scholar
  54. Hess, B. and Boiteux, A. (1968) in “Regulatory Functions of Biological Membranes” (Ed. J. Jarnefelt) pp. 148–162. Elsevier: Amsterdam.Google Scholar
  55. Hess, B. and Boiteux, A. (1971) Annu. Rev. Biochem. 40, 237–258.PubMedCrossRefGoogle Scholar
  56. Hess, B., Boiteux, A. and Kruger, J. (1969) Adv. Enzyme Regul. 7, 149–167.PubMedCrossRefGoogle Scholar
  57. Higgins, J. (1964) Proc. Natl. Acad. Sci. USA 51, 989–994.PubMedCrossRefGoogle Scholar
  58. Katz, B. and Thesleff, S. (1957) J. Physiol. 138, 63–80.PubMedGoogle Scholar
  59. Kauffman, S., Shymko, R.M. and Trabert, K. (1978) Science 199, 259–266.PubMedCrossRefGoogle Scholar
  60. De Kepper, P. (1976) C.R. Acad. Sci. Paris 283 C, 25–28.Google Scholar
  61. Klein, C. (1976) FEBS Lett. 68, 125–128.PubMedCrossRefGoogle Scholar
  62. Klein, C. (1979) J. Biol. Chem. 254, 12573–12578.PubMedGoogle Scholar
  63. Klein, C. and Darmon, M. (1977) Nature 268, 76–78.PubMedCrossRefGoogle Scholar
  64. von Klitzing, L. and Betz, A. (1970) Arch. Mikrobiol. 71, 220–222.CrossRefGoogle Scholar
  65. Konijn, T.M. (1972) Adv. Cyclic Nucleot. Res. 1, 17–31.Google Scholar
  66. Konijn, T.M., Van de Meene, J.G.C., Bonner, J.T. and Barkley, D.S. (1969) Proc. Nat1. Acad. Sci. USA 5–8, 1152–1154.Google Scholar
  67. Koshland, D.E. Jr. (1979) Physiol. Rev. 59, 811–862.PubMedGoogle Scholar
  68. Koshland, D.E. Jr., Goldbeter, A. and Stock, J.B. (1982) Science 217, 220–225.PubMedCrossRefGoogle Scholar
  69. Loomis, W.F., ed. (1982) “The Development of Dictyostelium discoideum”. Academic Press: New York.Google Scholar
  70. Lubs-Haukeness, J. and Klein, C. (1982) J. Biol. Chem. 257, 12204–12208.PubMedGoogle Scholar
  71. Malchow, D., Böhme, R. and Gras, U. (1982) Biophys. Struct. Mech. 9, 131–136.PubMedCrossRefGoogle Scholar
  72. Monod, J., Wyman, J. and Changeux, J.P. (1965) J. Mol. Biol. 12, 88–118.PubMedCrossRefGoogle Scholar
  73. Moran, F. and Goldbeter, A. (1984) Biophys. Chem. in press.Google Scholar
  74. Naparstek, A., Romette, J.L., Kernevez, J.P. and Thomas, D. (1974) Nature 249, 490–491.PubMedCrossRefGoogle Scholar
  75. Newell, P.C. and Ross, F.M. (1982) J. Gen. Mikrobiol. 128, 2715–2724.Google Scholar
  76. Nicolis, G. and Prigogine, I. (1977) “Self-Organization in Nonequilibrium Systems”. Wiley: New-York.Google Scholar
  77. Olsen, L.F. and Degn, H. (1977) Nature 267, 177–178.PubMedCrossRefGoogle Scholar
  78. Pacault, A., Hanusse, P., De Kepper, P., Vidal, C. and Boissonade, J. (1976) Acc. Chem. Res. 9, 438–445.CrossRefGoogle Scholar
  79. Prigogine, I. (1967) “Introduction to Thermodynamics of Irreversible Processes”. Wiley: New-York.Google Scholar
  80. Pye, E.K. (1969) Can. J. Bot. 47, 271–285.CrossRefGoogle Scholar
  81. Rapp, P.E. and Berridge, M.J. (1977) J. Theor. Biol. 66, 497–525.PubMedCrossRefGoogle Scholar
  82. Robertson, A. and Drage, D.J. (1975) Biophys. J. 15, 765–775.PubMedCentralPubMedCrossRefGoogle Scholar
  83. Roos, W., Nanjundiah, V., Malchow, D. and Gerisch, G. (1975) FEBS Lett. 53, 139–142.PubMedCrossRefGoogle Scholar
  84. Roos, W., Scheidegger, C. and Gerisch, G. (1977) Nature 266, 259261.CrossRefGoogle Scholar
  85. Schulmeister, T. and Sel’kov, E.E. (1978) Stud. Biophys. 72, 111–112, and Microfiche 1/24-37.Google Scholar
  86. Sel’kov, E.E. (1968) Eur. J. Biochem. 4, 79–86.CrossRefGoogle Scholar
  87. Shaffer, B.M. (1962) Adv. Morphogen. 2, 109–182.CrossRefGoogle Scholar
  88. Smith, W.R. (1983) Am. J. Physiol. (Regul. Integr. Comp. Physiol. 14) 245, R473–R477.Google Scholar
  89. Springer, M.S., Goy, M.F. and Adler, J. (1979) Nature 280, 279–284.PubMedCrossRefGoogle Scholar
  90. Stadel, J.M., Nambi, P., Shorr, R.G.L., Sawyer, D.F., Caron, M.G. and Lefkowitz, R.J. (1983) Proc. Natl. Acad. Sci. USA 80, 3173–3177.PubMedCrossRefGoogle Scholar
  91. Theibert, A. and Devreotes, P.N. (1983) J. Cell Biol. 97, 173–177.PubMedCrossRefGoogle Scholar
  92. Tolkovsky, A.M., Braun, S. and Levitki, A. (1982) Proc. Natl. Acad. Sci. USA 19, 213–217.CrossRefGoogle Scholar
  93. Tornheim, K. and Lowenstein, J.M. (1974) J. Biol. Chem. 249, 3241–3247.PubMedGoogle Scholar
  94. Venieratos, D. and Goldbeter, A. (1979) Biochimie. 61, 1247–1256.PubMedCrossRefGoogle Scholar
  95. Vidal, C. and Pacault, A., Eds. (1981) “Nonlinear Phenomena in Chemical Dynamics”. Series in Synergetics, Vol. 12, Springer: Berlin.Google Scholar
  96. Winfree, A.T. (1972) Science 175, 634–636.PubMedCrossRefGoogle Scholar
  97. Winfree, A.T. (1974) Sci. Amer. 230, 82–95.CrossRefGoogle Scholar
  98. Winfree, A.T. (1980) “The Geometry of Biological Time”. Springer: New-York.Google Scholar

Copyright information

© Springer Science+Business Media New York 1984

Authors and Affiliations

  • A. Goldbeter
    • 1
  • J-L. Martiel
    • 1
  • O. Decroly
    • 1
  1. 1.Faculte des SciencesUniversite Libre de BruxellesBrusselsBelgium

Personalised recommendations