Advertisement

X-rays Induced Double Strand Breaks: Damage Distribution and Measurement

  • O. Sapora
Chapter

Abstract

The nucleus of mammalian cell is an highly organized and complex structure containing a large amount of DNA arranged at least in three order levels including the nucleosome, the 30 um solenoid and the loops, wich form domains attached at their base to the nuclear matrix 1,2. The latter is an insoluble, structural framework that is composed of elements of the pore complex and lamina, nucleolus and an internal network of ribonucleoproteins attached to a fibrous protein mesh, the scaffoild-proteins 3 Two different forms of chromatin exist. The first, the bulk chromatin, may serve to hide the information content of the genome, with histons playing the role of repressors 4, so that the activity of a genomic region is related to alterations both local and extended of the bulk chromatin 5. The second form of chromatin, active or open chromatin, possess an higher sensitivity and site-restricted hypersensitivity to nucleases action 6,7. This fact has been demostrated both in in vitro cel-lular systems 8 and in fetal and adult erythropoietic tissues 9.

Keywords

Strand Break Double Strand Break Nuclear Matrix Single Strand Break Sedimentation Profile 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C.D. Lewis, J.S. Lebkowski, A.K. Daly J. Cell Sci. Suppl. 1, 103, (1984).PubMedGoogle Scholar
  2. 2.
    J. Mirkovitch, M.E. Mirault, U.K. 223, (1984).Google Scholar
  3. 3.
    J. R. Paulson, U.K. Laemmli, Cell, 1 2, 817, (1977).CrossRefGoogle Scholar
  4. 4.
    S. Weisbrod, Nature, 297, 289, (1982)PubMedCrossRefGoogle Scholar
  5. 5.
    T. Igo-Kemenes, W. Horz, and H..Zachan, Ann. Rev. Biochem., 51, 89, (1982).CrossRefGoogle Scholar
  6. 6.
    B. Gazit, H. Cedar, I. Lerer, and R. Voss, Science, 217, 648, (1982).PubMedCrossRefGoogle Scholar
  7. 7.
    Jing-de Zhu, A.Maggi, and J.Paul, Nucleic Acid Res., 12, 232, (1984).Google Scholar
  8. 8.
    N. Hutchison, S. Wenitraub, Cell, 43, 471, (1985).PubMedCrossRefGoogle Scholar
  9. 9.
    M. Groudine, T. Kohwi-Shigematsu, R.Gelinas, G. Stamatoyannopoulos, I. Papayannopoulon, Proc. Natl. Acad. Sci. USA, 80, 7551, (1983).CrossRefGoogle Scholar
  10. 10.
    M.G. Fried, and M. Crothers, J. Mol. Biol. 172, 263, (1984).PubMedCrossRefGoogle Scholar
  11. 11.
    S.M. Gasser, and U.K. Laemmli, Trends in Genetics, 3, 16, (1987).CrossRefGoogle Scholar
  12. 12.
    K.T. Wheeler and K. Wierowski, Radiat. Environ. Biophys. 22, 3, (1983).CrossRefGoogle Scholar
  13. 13.
    K.T. Wheeler, and G.B. Nelson, Radiat. Res., 109, 109, (1987).PubMedCrossRefGoogle Scholar
  14. 14.
    S.M. Chiu, N.L. Oleinick, L.R. Friedman, and P.J. Stambrook, Biochim. Biophys. Acta, 699, 15, (1982).CrossRefGoogle Scholar
  15. 15.
    S.M. Chiu, and N.L. Oleinick, Int. J. Radiat. Biol., 41, 71, (1982).CrossRefGoogle Scholar
  16. 16.
    R.Ramanathan, S. Rajalakshmi, D.R.S. Sarma, and E. Farber, Cancer Res., 36, 2073, (1976).Google Scholar
  17. 17.
    R. Warters, and T.J. Childers, Radiat. Res. 90, 564, (1982).PubMedCrossRefGoogle Scholar
  18. 18.
    Sapora and E.M. Fielden, in: “Advanced Topics on Radiosensitizers of hypoxic cells”, A.Breccia, L.Rimondi and G.E.Adams eds., Plenum Press, New York and London, vol.I, pg. 105, (1982).Google Scholar
  19. 19.
    K.H. Chadwick and H.P. Leenhouts, “Molecular Theory of Radiation Biology”, Springer-Verlag, Berlin, Heidelberg, New York, (1981).Google Scholar
  20. 20.
    D. Blocher, W. Pohlit, Int. J. Radiat. Biol., 42, 329, (1982).CrossRefGoogle Scholar
  21. 21.
    W. Pohlit, Radiat. Protection Microdosimetry, 13, 271, (1985).Google Scholar
  22. 22.
    I.R. Radford, Int. J. Radiat. Biol., 49, 611, (1986).CrossRefGoogle Scholar
  23. 23.
    F. Barone, M. Belli, E. Rongoni, O. Sapora, and M.A. Tabocchini, in: “Radiation Carcinogenesis and DNA Alterations”, F.J.Burns, A.C.Upton, and G.Silini, eds, Plenum Press, New York and London, pg. 293, (1986).Google Scholar
  24. 24.
    C. Heussen, Z. Nackerdieu, B.J. Smit and K. Bohm, Radiat. Res., 110, 84, (1987).PubMedCrossRefGoogle Scholar
  25. 25.
    L.K. Mee, and L. Adelstein, Radiat. Res., 26, 13, (1987)Google Scholar
  26. 26.
    W.A. Cramp, J.C. Edwards, A.M. George, and S.A. Sabovljev, Brit. J. Cancer, 49, suppl.VI, 7, (1984).Google Scholar
  27. 27.
    D. Blocher, Int. J. Radiat. 42, 317, (1983).CrossRefGoogle Scholar
  28. 28.
    Sapora and L. Chiara, CNEN-rt/PROT. 14, (1981).Google Scholar
  29. 29.
    I. Rubenstein and S.B. Leighton, Biophys. Chem. 1, 292, (1974).PubMedCrossRefGoogle Scholar
  30. 30.
    R.A. Fox, Int. J. Radiat. Biol., 30, 67, (1976).CrossRefGoogle Scholar
  31. 31.
    I.R. Radford, and G.S. Hodgson, Int. J. Radiat. Biol., 48, 555, (1985).CrossRefGoogle Scholar
  32. 32.
    J.W. Evans, C.L. Limoli, and J.F. Ward, 34th Annual Meeting of the Radiation Research Society, Book of Abstracts, Cq-17, (1986).Google Scholar
  33. 33.
    W.G. Woods, Biochim. Biophys. Acta, 655, 342, (1981).CrossRefGoogle Scholar
  34. 34.
    Sapora, A. Maggi and M. Quintiliani, in: “Radiation Carcinogenesis and DNA Alterations”, F.J.Burns, A.C. Upton and G. Silini, Plenum Press, New York and London, pg. 331, (1986).CrossRefGoogle Scholar
  35. 35.
    M.J. Tilby and P.S. Loverock,: 7th International Congress Radiation Research, Book of Abstracts, B2–39, (1983).Google Scholar
  36. 36.
    M.J. Tilby and P.S. Loverock, Radiat. Res., 96, 309, (1984).CrossRefGoogle Scholar
  37. 37.
    S.C. VanAnkeren and K.T. Wheeler, Biophys. J., 45, 421, (1984).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • O. Sapora
    • 1
  1. 1.Laboratorio di Tossicologia Comparata ed EcotossicologiaIstituto Superiore di Sanita’RomeItaly

Personalised recommendations