Skip to main content

Damage, Repair, and DNA Synthesis in Radiation Lethality of Mammalian Cells

  • Chapter
DNA Damage and Repair
  • 134 Accesses

Abstract

A number of lines of evidence implicate nuclear DNA, or nuclear structures containing genomic DNA, in mammalian cell killing by ionizing radiation. Among these are the sensitizing effect when thymine in DNA is partially replaced by a halogenated pyrimidine, the enhancement of cell killing which results from the pre- or postirradiation treatment with the DNA intercalator actinomycin D, and the increase in cell killing when the energy of a beam of electrons is increased sufficiently to just penetrate to the cell’s nucleus (see Elkind, 1985, and citations therein). In addition, there is evidence from microorganisms that the genotype of a cell significantly influences radiation response even when the survival curve is exponential (i.e., when a single-hit in the sensitive target is presumed to be sufficient for inactivation; see Elkind, 1977, 1987). Examples are the varying sensitivities of the E. coli K12 isogenic repair mutants (Yatagai and Matsuyama, 1977; Peak et al., 1980), and the genetically controlled repair of radiation damage in yeasts (e.g., Saeki et al., 1980; Reddy and Rao, 1981). Added to observations such as the foregoing is the inference that because genomic DNA has a central biological role, as well as a large target size, it can magnify discrete molecular damage into a lethal effect. This point can be simply illustrated by noting that a cell destined to die (i.e., to lose its ability to yield a clone of cells of unlimited size) may undergo 4–5 divisions before further division ceases and cell lysis becomes apparent (Elkind et al., 1963). During this abortive clonal growth, active DNA, RNA, and protein synthesis takes place as well as active general cell metabolism. The enzymatic and metabolic machinery for these processes represent small targets of which there are multiple copies compared to genomic DNA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • E. Ben-Hur and M. M. Elkind, Damage and repair of DNA in 5-bromodeoxyuridine labeled Chinese hamster cells exposed to fluorescent light, Biophys. J. 12: 636–647 (1972a).

    Article  PubMed  CAS  Google Scholar 

  • E. Ben-Hur and M. M. Elkind, Survival response of asynchronous and synchronous Chinese hamster cells exposed to fluorescent light following 5-bromodeoxyuridine incorporation, Mutat. Res. 14: 237–245 (1972b).

    Article  PubMed  CAS  Google Scholar 

  • D. Blöcher, M. Nüsse, and P. E. Bryant, Kinetics of double strand break repair in the DNA of X-irradiated synchronized mammalian cells, Int. J. Radiat. Biol. 43: 579–584 (1983).

    Article  Google Scholar 

  • S.-M. Chiu, N. M. Sokany, L. R. Friedman, and N. L. Oleinick, Differential processing of ultraviolet or ionizing radiation-induced DNA-protein cross-links in Chinese hamster cells, Int. J. Radiat. Biol. 46: 681–690 (1984).

    Article  CAS  Google Scholar 

  • T. M. Coquerelle, K. F. Weibezahn, and C. Lücke-Huhle, Rejoining of double strand breaks in normal human and ataxia-telangiectasia fibroblasts after exposure to “Co Y-rays,241Am a-particles or bleomycin, Int. J. Radiat. Biol. 51: 209–218 (1987).

    Article  CAS  Google Scholar 

  • M. M. Elkind, The initial part of the survival curve: Implications for low-dose, low-dose-rate responses, Radiat. Res. 71: 9–23 (1977).

    Article  PubMed  CAS  Google Scholar 

  • M. M. Elkind, Repair processes in radiation biology, Radiat. Res. 100: 425–449 (1984).

    Article  PubMed  CAS  Google Scholar 

  • M. M. Elkind, DNA damage and cell killing, cause and effect?, Cancer 56: 2351–2363 (1985).

    Article  PubMed  CAS  Google Scholar 

  • M. M. Elkind, Target theory, linearity, and repair/misrepair processes in radiobiology, In Proceedings, 8th International Congress of Radiation Research, Edinburgh, 18–25 July 1987 (in press).

    Google Scholar 

  • M. M. Elkind, A. Han, and K. W. Volz, Radiation response of mammalian cells grown in culture. IV. Dose dependence of division delay and postirradiation growth of surviving and nonsurviving Chinese hamster cells, J. Nat. Cancer Inst. 30: 705–721 (1963).

    Google Scholar 

  • M. M. Elkind and H. A. Sutton, X-ray damage and recovery in mammalian cells in culture, Nature 184:1293–1295 (1959).

    Google Scholar 

  • M. M. Elkind and H. A. Sutton, Radiation response of mammalian cells grown in culture. I. repair of X-ray damage in surviving Chinese hamster cells, Radiat. Res. 13: 556–593 (1960).

    Article  PubMed  CAS  Google Scholar 

  • M. M. Elkind, H. Utsumi, and E. Ben-Hur, Are single or multiple mechanisms involved in radiation-induced mammalian cell killing?, Br. J. Cancer 55: 24–31 (Suppl. VII) (1987).

    Google Scholar 

  • M. P. Hagan and M. M. Elkind, Changes in repair competency after 5bromodeoxyuridine pulse labeling and near-ultraviolet light, Biophys. J. 27: 75–85 (1979).

    Article  PubMed  CAS  Google Scholar 

  • M. P. Hagan and M. M. Elkind, Recovery after exposure to near-ultraviolet light of cells containing 5-bromodeoxyuridine, Biophys. J. 34: 367–374 (1981).

    Article  PubMed  CAS  Google Scholar 

  • K. G. Hofer and R. L. Warters, Cell lethality after selective irradiation of the DNA replication fork, Radiat. Environ. Biophys. 24: 161–174 (1985).

    Article  PubMed  CAS  Google Scholar 

  • F. Hutchinson, The lesions produced by ultraviolet light in DNA containing 5-bromouracil, Q. Rev. Biophys. 6: 201–246 (1973).

    Article  PubMed  CAS  Google Scholar 

  • P. A. Jeggo, X-ray sensitive mutants of Chinese hamster ovary cell line: radio-sensitivity of DNA synthesis, Mutat. Res. 145: 171–176 (1985).

    Article  PubMed  CAS  Google Scholar 

  • L. M. Kemp, S. G. Sedgwick, and P. A. Jeggo, X-ray sensitive mutants of Chinese hamster ovary cells defective in double-strand break rejoining, Mutat. Res. 132: 189–196 (1984).

    Google Scholar 

  • R. E. Krisch and C. J. Sauri, Further studies of DNA damage and lethality from the decay of 125I in bacteriophage, Int. J. Radiat. Biol. 27: 553–560 (1975).

    CAS  Google Scholar 

  • L. G. Lajtha, R. Oliver, R. Berry, and W. D. Noyes, Mechanism of radiation effect on the process of synthesis of deoxyribonucleic acid, Nature 182: 1788–1790 (1958).

    Article  PubMed  CAS  Google Scholar 

  • P. K. LeMotte and J. B. Little, DNA damage induced in human diploid cells by decay of incorporated radionuclides, Cancer Res. 44: 1337–1342 (1984).

    PubMed  CAS  Google Scholar 

  • F. Makino and S. Okada, Effects of ionizing radiations on DNA replication in cultured mammalian cells, Radiat. Res. 62: 37–51 (1975).

    Article  PubMed  CAS  Google Scholar 

  • R. E. Meyn, S. C. vanAnkeren, and W. T. Jenkins, The induction of DNA-protein crosslinks in hypoxic cells and their possible contribution to cell lethality, Radiat. Res. 109: 419–429 (1987).

    Article  PubMed  CAS  Google Scholar 

  • M. G. Ord and L. A. Stocken, Studies in synthesis of deoxyribonucleic acid, Nature 182: 1878–1788 (1958).

    Article  Google Scholar 

  • R. B. Painter, Inhibition of mammalian cell DNA synthesis by ionizing radiation, Int. J. Radiat. Biol. 49: 771–781 (1986).

    Article  CAS  Google Scholar 

  • R. B. Painter and R. E. Rasmussen, Organization of deoxyribonucleic acid replicating system in mammalian cells as revealed by the use of X-radiation and bromouracil deoxyriboside, Nature 201: 162–1165 (1964).

    Article  PubMed  CAS  Google Scholar 

  • R. B. Painter, B. R. Young, and H. J. Burki, Non-reparable strand breaks induced by 1251 incorporated into mammalian DNA, Proc. Natl. Acad. Sci. USA 71: 4336–4338 (1974).

    Article  Google Scholar 

  • M. J. Peak, R. B. Webb, and E. J. Ainsworth, Survival of Escherichia coli strains differing in DNA repair capability after irradiation by fission-spectrum neutrons, Radiat. Res. 81: 145–149 (1980).

    Article  PubMed  CAS  Google Scholar 

  • I. R. Radford and G. S. Hodgson, Effect of ploidy on the response of V79 cells to ionizing radiation, Int. J. Radiat. Biol. 51: 765–778 (1987).

    Article  CAS  Google Scholar 

  • N. Ramakrishnan, S.-m. Chiu, and N. L. Oleinick, Yield of DNA-protein cross-links in Y-irradiated Chinese hamster cells, Cancer Res. 47: 2032–2035 (1987).

    PubMed  CAS  Google Scholar 

  • N. M. S. Reddy and B. S. RAO, Genetic control of repair of radiation damage produced under euoxic and anoxic conditions in diploid yeast (Saccharomyces cerevisiae, Radiat. Res. 19: 187–195 (1981).

    CAS  Google Scholar 

  • M. A. Saeki, I. Machida, and S. Nakai, Genetic control of diploid recovery after gamma irradiation in yeast Saccharomyces cerevisiae, Mutat. Res. 73: 251–265 (1980).

    Article  CAS  Google Scholar 

  • J. Thacker and A. Stretch, Responses of 4 X-ray-sensitive CHO cell mutants to different radiations and to irradiation conditions promoting cellular recovery, Mutat. Res. 1)46: 99–108 (1985).

    Google Scholar 

  • H. Utsumi and M. M. Elkind, Caffeine-enhanced survival of radiation-sensitive, repair-deficient Chinese hamster cells, Radiat. Res. 96: 348–358 (1983).

    Article  PubMed  CAS  Google Scholar 

  • H. Utsumi and M. M. Elkind, Two forms of potentially lethal damage have similar repair kinetics in plateau-and in log-phase cells, Int. J. Radiat. Biol. 47: 569–580 (1985).

    Article  CAS  Google Scholar 

  • H. Utsumi and M. M. Elkind, Potentially lethal damasge, deficient repair in X-ray-sensitive caffeine-responsive Chinese hamster cells, Radiat. Res. 107: 95–106 (1986).

    Article  PubMed  CAS  Google Scholar 

  • H. Utsumi, C. K. Hill, E. Ben-Hur, and M. M. Elkind, “Single-hit” potentially lethal damage: evidence of its repair in mammalian cells, Radiat. Res. 87: 576–591 (1981).

    Article  PubMed  CAS  Google Scholar 

  • K. F. Weibezahn and T. Coquerelle, Radiation induced DNA double strand breaks are rejoined by ligation and recombination processes, Nucleic Acids Res. 9: 3139–3150 (1981).

    Article  PubMed  CAS  Google Scholar 

  • K. F. Weibezahn, H. Lohrer, and P. Herrlich, Double-strand break repair and G2 block in Chinese hamster ovary cells and their radiosensitive mutants, Mutat. Res. 145: 177–183 (1985).

    Article  PubMed  CAS  Google Scholar 

  • F. Yatagai and A. Matsuyama, LET-dependent radiosensitivity of Escherichia coli K-12 rec and uvr mutants, Radiat. Res. 71: 259–263 (1977).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1989 Springer Science+Business Media New York

About this chapter

Cite this chapter

Elkind, M.M., Utsumi, H., Hagan, M., Ben-Hur, E. (1989). Damage, Repair, and DNA Synthesis in Radiation Lethality of Mammalian Cells. In: Castellani, A. (eds) DNA Damage and Repair. Springer, Boston, MA. https://doi.org/10.1007/978-1-4757-5016-4_35

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-5016-4_35

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4757-5018-8

  • Online ISBN: 978-1-4757-5016-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics