Antineoplastic Agents Inhibitor of Topoisomerase II

  • Yves Pommier
  • Donna Kerrigan
  • Christine Jaxel
  • Joseph M. Covey
  • Elliott Ulhenhopp
  • Michael R. Mattern


The extreme length of the DNA molecules in the nuclei of eukaryotic cells, as well as the possible attachment of the DNA to a structural matrix or scaffold in the nuclei, constrains the topology of the DNA helices. The topological constraint is that the two strands of a DNA helix are unable to change the number of turns of one strand about the other (the “linking number”, Lk), unless one or both strands are temporarily cut to form a gap through which other parts of the strands can pass. The topoisomerases provide mechanisms for such cutting and passing of strands, without which the DNA helix cannot unwind and replicated chromosomes cannot segregate.


Sister Chromatid Exchange Chinese Hamster Cell Chinese Hamster Ovary Cell Line Drug Removal Alkaline Elution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wang, J. C. DNA topoisomerases. Ann. Rev. Biochem. (1985) 54, 665–697.CrossRefGoogle Scholar
  2. 2.
    Wang, J. C. Biochim. Biophys. Acta (1987) 909, 1–9.PubMedCrossRefGoogle Scholar
  3. 3.
    Gellert, M. DNA topoisomerases. Ann. Rev. Biochem. (1981) 50, 979–910.Google Scholar
  4. 4.
    Liu, L. F. DNA topoisomerases: enzyme that catalyze the breaking and rejoining of DNA. CRC Critical Review in Biochemistry (1983) 15, 1–24.CrossRefGoogle Scholar
  5. 5.
    Shelton, E. R., Osheroff, N., and Brutlag, D. L. DNA topoisomerase II from Drosphila melanogaster. Purification and physical characterization. J. Biol. Chem. (1983) 258, 9530–9535.PubMedGoogle Scholar
  6. 6.
    Liu, L. F., Rowe, T. C., Yang, L., Tewey, K. M., and Chen, G. L. Reversible DNA strand cleavage by mammalian DNA topoisomerase II. J. Biol. Chem. (1983) 258, 15365–15370.Google Scholar
  7. 7.
    Nelson, W. G., Pienta, K. J., Barrack, E. R., and Coffey, D. S. The role of the nuclear matrix in the organization and function of DNA. Ann. Rev. Biophys. Chem. (1986) 15, 457–475.CrossRefGoogle Scholar
  8. 8.
    Earnshaw, W. C., Halligan, B., Cooke, C. A., Heck, M. M. S., and Liu, L. F. Topoisomerase II is a structural component of mitotic chromosome scaffolds. J. Cell Biol. (1985) 100, 1706–1715.PubMedCrossRefGoogle Scholar
  9. 9.
    Gasser, S. M., Laroche, T., Falquet, J., Boy De La Tour, E., and Laemmli, U. K. Metaphase chromosome structure. Involvement of topoisomerase II. J. Mol. Biol. (1986) 188, 613–629.Google Scholar
  10. 10.
    Ross, W. E., Glaubiger, D. L., and Kohn, K. W. Qualitative and quantitative aspects of intercalator-induced DNA strand breaks. Biochim. Biophys. Acta (1979) 562, 41–50.PubMedCrossRefGoogle Scholar
  11. 11.
    Zwelling, L. A., Michaels, S., Erickson, L. C., Ungerleider, R. S., Nichol, M., and Kohn, K. W. Protein-associated DNA strand breaks in L1210 cells treated with the DNA intercalating agent, 4’-(9-acridinylamino)methanesulfon-m-anisidide and adriamycin. Biochemistry (1981) 20, 6553–6563.PubMedCrossRefGoogle Scholar
  12. 12.
    Pommier, Y., Mattern, M. R., Schwartz, R. E., and Zwelling, L. A. Absence of swivelling at sites of intercalator-induced protein-associated deoxyribonucleic acid strand breaks in mammalian cell nucleoids. Biochemistry (1984) 23, 2922–2927.PubMedCrossRefGoogle Scholar
  13. 13.
    Pommier, Y., Mattern, M., Schwartz, R. E., Zwelling, L. A., and Kohn, K. W. Changes in deoxyribonucleic acid linking number due to treatment of mammalian cells with the intercalating agent, 4’-(9acridinylamino) methanesulfon-m-anisidide. Biochemistry (1984) 23, 2932, 2927.PubMedCrossRefGoogle Scholar
  14. 14.
    Marshall, B., Ralph, R. K., and Hancock, R. Blocked 5’-termini in the fragments of chromosomal DNA produced in cells exposed to the antitumor drug 4’-(9-acridinylamino)methanesulphon-m-anisidide (m-AMSA). Nucleic Acids Res. (1983) 11, 4251–4256.PubMedCrossRefGoogle Scholar
  15. 15.
    Long, B. H., Musial, S. T., and Brattain, M. G. Comparison of cytotoxicity and DNA breakage activity of congeners of podophyllotoxin including VP16–213 and VM-26: A quantitative structure-activity relationship. Biochemistry (1984) 23, 1183–1188.Google Scholar
  16. 16.
    Wozniak, A. J., and Ross, W. E. DNA damage as a basis for 4’-demethylepipodophyllotoxin-9-(4,6–0-ethylidene- -D-glucopyranoside)(Etoposide) cytotoxicity. Cancer Res. (1983) 43, 120–124.PubMedGoogle Scholar
  17. 17.
    Pommier, Y., Kerrigan, D., Schwartz, R., and Zwelling, L. A. The formation and resealing of intercalator-induced DNA strand breaks in isolated L1210 cell nuclei. Biochem. Biophys. Res. Commun. (1982) 107, 576–583.PubMedCrossRefGoogle Scholar
  18. 18.
    Filipski, J. and Kohn, K. W. Ellipticine-induced protein-associated DNA breaks in isolated L1210 nuclei. Biochim. Biophys. Acta (1982) 698, 280–286.CrossRefGoogle Scholar
  19. 19.
    Pommier, Y., Schwartz, R. E., Kohn, K. W., and Zwelling, L. A. Formation and rejoining of deoxyribonucleic acid double-strand breaks produced in isolated cell nuclei by antineoplastic antitumor intercalating agents. Biochemistry (1984) 23, 2927–2932.PubMedCrossRefGoogle Scholar
  20. 20.
    Tewey, K. M., Rowe, T. C., Yang, L., Halligan, B. D., and Liu, L. F. Adriamycin-induced DNA damage mediated by mammalian DNA topoisomerase II. Science (1984) 226, 466–468.PubMedCrossRefGoogle Scholar
  21. 21.
    Minford, J., Pommier, Y., Filipski, J., Kohn, K. W., Kerrigan, D., Mattern, M., Michaels, S., Schwartz, R., and Zwelling, L. A. Isolation of intercalator-dependent protein-linked DNA strand cleavage activity from cell nuclei and identification as DNA topoisomerase II. Biochemistry (1986) 25, 9–16.PubMedCrossRefGoogle Scholar
  22. 22.
    Kohn, K. W., Ewig, R. A. G., Erickson, L. C., and Zwelling, L. A. Measurement of DNA strand breaks and crosslinks by alkaline elution. In: E. C. Friedberg and P. C. Hanawalt (eds.). DNA Repair. A Laboratory Manual of Research Techniques. pp. 379–401. New York: Marcel Dekker, 1981.Google Scholar
  23. 23.
    Zwelling, L. A., Michaels, S., Kerrigan, D., Pommier, Y., and Kohn, K. W. Protein-associated deoxyribonucleic acid strand breaks produced in mouse leukemia L1210 cells by ellipticine and 2-methyl-9-hydroxyellipticinium. Biochem. Pharmacol. (1982) 31, 3261–3267.PubMedCrossRefGoogle Scholar
  24. 24.
    Pommier, Y., Zwelling, L. A., Mattern, M. R., Erickson, L. C., Kerrigan, D., and Kohn, K. W. Effects of dimethyl sulfoxide and thiourea upon intercalator-induced DNA strand breaks in mouse leukemia (L1210) cells. Cancer Res. (1983) 43, 5718–5724.PubMedGoogle Scholar
  25. 25.
    Kerrigan, D., Pommier, Y., and Kohn, K. W. Protein-linked DNA strand breaks produced by etoposide (VP-16) and teniposide (VM-26) in mouse L1210, and human VA-13 and HT-29 cell lines. Relationship to cytotoxicity. Proceeding of the First Conference on DNA Topoisomerases in Cancer Chemotherapy. NCI Monograph (1987) 4, 117–121.Google Scholar
  26. 26.
    Cook, P. R. and Brazell, I. A. Conformation constraints in nuclear DNA. J. Cell Sci. (1976) 22, 287–302.PubMedGoogle Scholar
  27. 27.
    Mattern, M. R. and Painter, R. B. Dependence of mammalian DNA replication on DNA supercoiling. I. Effect of ethidium bromide on DNA synthesis in permeable Chinese hamster ovary cells. Biochim. Biophys. Acta (1979) 563, 293–305.CrossRefGoogle Scholar
  28. 28.
    Marini, J. C., Miller, K. G., and Englund, P. T. Decatenation of kinetoplast DNA by topoisomerase II. J. Biol. Chem. (1980) 255, 4976–4979.Google Scholar
  29. 29.
    Liu, L. F., and Davis, J. L., and Calendar, R. Novel topologically knotted DNA from bacteriophage P4 capsids: Studies with DNA topoisomerases. Nucleic Acid Res. (1981) 9, 3979–3989.PubMedCrossRefGoogle Scholar
  30. 30.
    Kohn, K. W., Pommier, Y., Kerrigan, D., Markovits, J., and Covey, J. Topoisomerase II as a target of anticancer drug action in mammalian cells. Proceedings of the First Conference on Topoisomerases in Cancer Chemotherapy, NCI Monograph (1987) 4, 61–71.Google Scholar
  31. 31.
    Yang, L., Rowe, T. C., and Liu, L. F. Identification of DNA topoisomerase II as an intracellular target of antitumor epipodophyllotoxins in Simian virus 40-infected monkey cells. Cancer Res. (1985) 45, 5872–5876.PubMedGoogle Scholar
  32. 32.
    Pommier, Y., Minford, J. K., Schwartz, R. E., Zwelling, L. A., and Kohn, K. W. Effects of the DNA intercalators 4’-(9-acridinylamino) methanesulfon-m-anisidide and 2-methyl-9-hydroxyellipticinium on topoisomerase II-mediated DNA strand cleavage and strand passage. Biochemistry (1985) 24, 6410–6416.PubMedCrossRefGoogle Scholar
  33. 33.
    Chen, G. L., Yang, L., Rowe, T. C., Halligan, B. D., Tewey, K. M., and Liu, L. F. Non-intercalative antitumor drugs interfere with the breakage-reunion reaction of mammalian DNA topoisomerase II. J. Biol. Chem. (1985) 259, 13560–13566.Google Scholar
  34. 34.
    Long, B. H., Musial, S. T., and Brattain, M. G. Single-and double-strand DNA breakage and repair in human lung adenocarcinoma cells exposed to etoposide and teniposide. Cancer Res. (1985) 45, 3106–3112.PubMedGoogle Scholar
  35. 35.
    Pommier, Y., Covey, J., Kerrigan, D., Mattes, W., Markovits, J., and Kohn, K. W. Role of DNA intercalation in the inhibition of purified mouse leukemia (L1210) DNA topoisomerase II by 9-aminoacridines. Biochem. Pharmacol. (1987) 36, 3477–3486.PubMedCrossRefGoogle Scholar
  36. 36.
    Tewey, K. M., Chen, G. L., Nelson, E. M., and Liu. L. F. Intercalative antitumor drugs interfere with the breakage-reunion reaction of mammalian DNA topoisomerase II. J. Biol. Chem. (1984) 259, 9182–9187.Google Scholar
  37. 37.
    Pommier, Y., Covey, J. M., Kerrigan, D., Markovits, J., and Pham, R. DNA unwinding and inhibition of mouse leukemia L1210 DNA topoisomerase I by intercalators. Nucl. Acids Res. (1987) 15, 6713–6731.PubMedCrossRefGoogle Scholar
  38. 38.
    Denny, W. A., and Wakelin, L. P. G. Kinetic and equilibrium studies of the interaction of amsacrine and anilino ring-substituted analogs with DNA. Cancer Res. (1986) 46, 1717–1721.PubMedGoogle Scholar
  39. 39.
    Rowe, T., Kukpper, G., and Ross, W. Inhibition of epipodophyllotoxin cytotoxicity by interference with topoisomerase-mediated DNA cleavage. Biochem. Pharmacol. (1985) 14, 2483–2487.CrossRefGoogle Scholar
  40. 40.
    Markovits, J., Pommier, Y., Mattern, M. R., Esnault, C., Roques, B. P., Le Pecq, J. B., and Kohn, K. W. Effects of the bifunctional antitumor intercalator ditercalinium on DNA in mouse leukemia L1210 cells and DNA topoisomerase II. Cancer Res. (1986) 46, 5821–5826.PubMedGoogle Scholar
  41. 41.
    Sander, M. and Hsieh, T. S. Drosophilia topoisomerase II double-strand DNA cleavage: analysis of DNA sequence homology at the cleavage site. Nucleic Acids Res. (1985) 13, 1057–1071.PubMedCrossRefGoogle Scholar
  42. 42.
    Riou, J. F., Gabillot, M., Phielippe, M., Schrevel, J., and Riou, G. Purification and characterization of plasmodium berghei DNA topoisomerases I and II: Drug action, inhibition of decatenation and relaxation, and stimulation of DNA cleavage. Biochemistry (1986) 25, 1471–1476.PubMedCrossRefGoogle Scholar
  43. 43.
    Vilarem, J. J., Riou, J. F., Multon, E., Grass, M. P., and Larsen, C. J. The in vitro involvement of topoisomerase II in the activity of aza-ellipticine analogues is not correlated with drug activity in isolated nuclei. Biochem. Pharmacol. (1986) 35, 2087–2095.PubMedCrossRefGoogle Scholar
  44. 44.
    Zwelling, L. A., Kerrigan, D., Michaels, S., and Kohn, K. W. Cooperative sequestration of m-AMSA in L1210 cells. Biochem. Pharmacol. (1982) 31, 3269–3277.PubMedCrossRefGoogle Scholar
  45. 45.
    Smith, P. J., Anderson, C. O., and Watson, J. V. Predominant role for DNA damage in etoposide-induced cytotoxicity and cell cycle perturbation in human SV40-transformed fibroblasts. Cancer Res. (1986) 46, 5641–5645.PubMedGoogle Scholar
  46. 46.
    Kalwinsky, D. K., Look, A. T., Ducore, J., and Fridland, A. Effects of the epipodophyllotoxin VP-16–213 on cell cycle traverse, DNA synthesis and DNA strand size in cultures of human leukemic lymphoblasts. Cancer Res. (1983) 43, 1592–1597.PubMedGoogle Scholar
  47. 47.
    Pommier, Y., Zwelling, L. A., Shan, C. S., Whang-Peng, J., and Bradley, M. O. Correlation between intercalator-induced DNA strand breaks, sister chromatid exchanges, mutations and cytotoxicity in Chinese hamster cells. Cancer Res. 45, 3143–3149, 1984.Google Scholar
  48. 48.
    Pommier, Y., Kerrigan, D., and Kohn, K. W. Topoisomerase II alterations associated with drug resistance in a line of chinese hamster cells. Proceeding of the First Conference on Topoisomerases in Cancer Chemotherapy. NCI Monograph (1987) 4, 83–87.Google Scholar
  49. 49.
    Sullivan, D. M., Glisson, B. S., Hodges, P. K., Smallwood-Kentro, S., and Ross, W. E. Proliferation dependence of topoisomerase II mediated drug action. Biochemistry (1986) 25, 2248–2256.PubMedCrossRefGoogle Scholar
  50. 50.
    Zwelling, L. A., Estey, E., Silberman, L., Doyle, S., and Hittelman, W. Effect of Cell proliferation and chromatin conformation on intercalatorinduced, protein-associated DNA cleavage in human brain tumor cells and human fibroblasts. Cancer Res. (1987) 47, 251–257.PubMedGoogle Scholar
  51. 51.
    Markovits, J., Pommier, Y., Kerrigan, n., Covey, J., Tilchen, E. J., and Kohn, K. W. Topoisomerase II-mediated DNA breaks and cytotoxicity in relation to cell proliferation and the cell cycle. Cancer Res. (1987) 47, 2050–2055.PubMedGoogle Scholar
  52. 52.
    Duguet, M., Lavenot, C., Harper, F., Mirambeau, G., and DeRecondo, A. M. DNA topoisomerases from rat liver: physiological variations. Nucl. Acids Res. (1985) 11, 1059–1075.CrossRefGoogle Scholar
  53. 53.
    Taudou, G., Mirambeau, G., Lavenot, C., Der Garabedian, A., Vermaersch, J., and Duguet, M. DNA topoisomerase activities in concanavaline A-stimulated lymphocytes. FEBS (1984) 176, 431–435.CrossRefGoogle Scholar
  54. 54.
    Nelson, W. G., Liu, L. F., and Coffey, D. S. Newly replicated DNA is associated with DNA topoisomerase II in cultured rat prostatic adenocarcinoma cells. Nature (1986) 322, 187–189.PubMedCrossRefGoogle Scholar
  55. 55.
    Holm, C., Goto, T., Wang, J. C., and Boldstein, D. DNA topoisomerase II is required at the time of mitosis in yeast. Cell (1985) 41, 553–563.PubMedCrossRefGoogle Scholar
  56. 56.
    Yemura, T. and Yanagida, M. Mitotic spindle pulls but fails to separate chromosomes in type II DNA topoisomerase mutants: uncoordiated mitosis. EMBO J. (1986) 5, 1003–1010.Google Scholar
  57. 57.
    DiNardo, S., Voelkel, K., and Sternglanz, R. DNA topoisomerases II mutant of Saccharomyces cerevisiae: Topoisomerase II is required for segregation of daughter molecules at the termination of DNA replication. Proc. Natl. Acad. Sci. USA (1984) 81, 2616–2620.PubMedCrossRefGoogle Scholar
  58. 58.
    Painter, R. B. A replication model for sister chromatid exchanges. In: Sister Chromatid Exchange (1982) pp. 115–121. New York:Alan Liss.Google Scholar
  59. 59.
    Ikeda, H. Bacteriophage T4 DNA topoisomerase mediates illegitimate recombination in vitro. Proc. Natl. Acad. Sci. USA (1986) 83, 922–926.PubMedCrossRefGoogle Scholar
  60. 60.
    Huang, C. C., How, Y., and Wang, J. J. Effects of a new antitumor agent, epipodophyllotoxin, on growth and chromosomes in humanGoogle Scholar
  61. 61.
    Hsu, T. C., Pathank, S., and Kusyk, C. Continuous induction of chromatin lesions by DNA intercalating compounds. Mut. Res. (1975) 33, 417–420.CrossRefGoogle Scholar
  62. 62.
    Pommier, Y., Kerrigan, D., Covey, J. M., Kao-Shan, C. S., and Whang-Peng, J. Sister chromatid exchanges, chromosonal aberrations, and cytotoxicity produced by antitumor topoisomerase II inhibitors in sensitive (DC3F) and resistant (DC3F/9-OHE) chinese hamster cells. Cancer Res. (1987) 48, 512–516.Google Scholar
  63. 63.
    Rowe, T. C., Chen. G. L., and Hsiang, Y.-H. and Liu, L. F. DNA damage by antitumor acridines mediated by mammalian DNA topoisomerase II. Cancer Res. (1986) 46, 2021–2026.PubMedGoogle Scholar
  64. 64.
    Covey, J. M., Kohn, K. W., Kerrigan, D., Tilchen, E. J., and Pommier, Y. Topoisomerase II-mediated DNA damage produced by 4’-(9-acridinylamino)methanesulfon-m-anisidide and related acridines in L1210 cells and isolated nuclei: relation to cytotoxicity. Cancer Res. (1987) 48, 860–865.Google Scholar
  65. 65.
    Salles, B., Charcosset, J. Y., and Jacquemin-Sablon, A. Isolation and properties of Chinese hamster lung cells resistant to ellipticine derivatives. Cancer Treat. Rep. (1982) 66, 327–338.CrossRefGoogle Scholar
  66. 66.
    Charcosset, J. Y., Salles, B., and Jacquemin-Sablon, A. Uptake and Cytofluorescence localization of ellipticine derivatives in sensitive and resistant Chinese hamster lung cells. Biochem. Pharmacol. (1983) 32, 1037–1044.PubMedCrossRefGoogle Scholar
  67. 67.
    Charcosset, J. Y., Bendirdjian, J. P., Lantiere, M. F., and JacqueminSablon, A. Effects of 9–0H-ellipticine on cell survival, macromolecular syntheses, and cell cycle progression in sensitive and resistant chinese hamster lung cells. Cancer Res. (1983) 45, 4229–4236.Google Scholar
  68. 68.
    Gupta, R. S. Genetic, biochemical, and cross-resistance studies with mutants of Chinese hamster ovary cells resistant to the anticancer drugs, VM-26 and VP-16–213. Cancer Res. (1983) 43, 1568–1574.PubMedGoogle Scholar
  69. 69.
    Johnson, R. K. and Howard, W. S. Development and cross resistance characteristics of a subline of P388 leukemia resistant to 4’-(9acridinylamino)methanesulfon-m-anisidide. Eur. J. Cancer Clin. Oncol. (1982) 31, 3008–3010.Google Scholar
  70. 70.
    Kessel, D., Wheeler, C., Chou, T. H., Howard, W. S., and Johnson, R. K. Studies on a mode of resistance to m-AMSA. Biochem. Pharmacol. (1982) 31, 3008–3010.PubMedCrossRefGoogle Scholar
  71. 71.
    Goldenberg, G., J., Wang, H., and Blair, G. W. Resistance to adriamycin: relationship to cytotoxicity to drug uptake and DNA single-and double-strand breakage in cloned cell lines of adriamycinsensitive and -resistant P388 leukemia. Cancer Res. (1986) 46, 2978–2983.PubMedGoogle Scholar
  72. 72.
    Zijlstra, J. G., de Vries, E. G. E., and Mulder, N. H. Multifactorial drug resistance in an adriamycin-resistant human small cell lung carcinoma cell line. Cancer Res. (1987) 47, 1780–1784.PubMedGoogle Scholar
  73. 73.
    Dank, M. K., Yalowich, J. C., and Beck, W. T. Atypical multiple drug resistance in a human leukemic cell line selected for resistance to teniposide (VM26). Cancer Res. (1987) 47, 1297–1301.Google Scholar
  74. 74.
    Odaimi, M., Andersson, B. S., McCredie, K. B., and Beran, M. Drug sensitivity and cross-resistance of the 4’-(9-acridinylamino) methanesulfon-m-anisidide-resistant subline of HL-60 human leukemia. Cancer Res. (1986) 46, 330–3333.Google Scholar
  75. 75.
    Marsh, W., Sicheri, D., and Center, M. S. Isolation and characterization of adriamycin-resistant HL-60 cells which are not defective in the initial accumulation of drug. Cancer Res. (1986) 46, 4053–4057.Google Scholar
  76. 76.
    Long, B. H., Musial, S. T., and Brattain, M. G. DNA breakage in human lung carcinoma cells and nuclei that are naturally sensitive or resistant to etoposide and teniposide. Cancer Res. (1986) 46, 3809–3816.PubMedGoogle Scholar
  77. 77.
    Pommier, Y., Schwartz, R., Zwelling, L. A., Kerrigan, D., Mattern, M. R., Charcosset, J. Y., Jacquemin-Sablon, A., and Kohn, K. W. Reduced formation of protein-associated DNA strand breaks in Chinese hamster cells resistant to topoisomerase II inhibitors. Cancer Res. (1986) 46, 611–616.PubMedGoogle Scholar
  78. 78.
    Glisson, B., Gupta, R., Smallwookd-Kentro, S., and Ross. W. Characterization of acquired epipodophyllotoxins resistance in a Chinese hamster ovary cell line: Loss of drug-stimulated DNA cleavage activity. Cancer Res. (1986) 46, 1934–1938.PubMedGoogle Scholar
  79. 79.
    Bakic, M., Beran, M., Anderson, B. S., Silberman, L, Estey, E., and Zwelling, L. A. The production of topioisomerase II-mediated DNA cleavage in human leukemia cells predicts their susceptibility to 4-’ (9-acridinylamino)methanesulfon-m-anisidide (m-AMSA). Biochem. Biophys. Res. Comm. (1986) 134, 638–645.PubMedCrossRefGoogle Scholar
  80. 80.
    Pommier, Y., Kerrigan, D., Schwartz, R., Swack, J., and McCurdy, A. Altered topoisomerase II activity in Chinese hamster cells resistant to topoisomerase II inhibitors. Cancer Res. (1986) 46, 3075–3081.PubMedGoogle Scholar
  81. 81.
    Glisson, B., Gupta, R., Hodges, P., and Ross. W. Cross-resistance to intercalating agents in an epipodophyllotoxin-resistant Chinese hamster ovary cell line: Evidence for a common intracellular target. Cancer Res. (1986) 46, 1939–1942.PubMedGoogle Scholar
  82. 82.
    Sullivan, D. and Ross, W. E. Purification and characterization of a topoisomerase II mutant from epipodophyllotoxin-resistant Vpm -5 cells. Proceedings of the Am. Assoc. Cancer Res. (1987) 28, 293.Google Scholar
  83. 83.
    Robson, C. N., Hoban, P. R., Harris, A. L., and Hickson, I. D. Cross-sensitivity to topoisomerase II inhibitors in cytotoxic drug-hypersensitve Chinese hamster ovary cell lines. Cancer Res. (1987) 47, 1540–1565.Google Scholar
  84. 84.
    Kupfer, G., Bodley, A. L., and Liu, L. F. Involvement of intracellular ATP in cytotoxicity of topoisomerase II-targetting antitumor drugs. First Conference on DNA topoisomerases in Cancer Chemotherapy. NCI Monograph (1987) 4, 37–40.Google Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • Yves Pommier
    • 1
  • Donna Kerrigan
    • 1
  • Christine Jaxel
    • 1
  • Joseph M. Covey
    • 1
  • Elliott Ulhenhopp
    • 1
  • Michael R. Mattern
    • 1
  1. 1.Laboratory of Molecular Pharmacology, DCT, NCI BLDG 37, RM 5A19National Institutes of HealthBethesdaUSA

Personalised recommendations