Advertisement

Macromolecular Physiology of the Escherichia coli UVR Proteins

  • Lawrence Grossman
  • Euk Y. Oh
  • Sharlyn Mazur
  • Paul Caron
Chapter

Abstract

Nucleotide excision as exemplified in Escherichia coli is an ideal DNA repair system capable of repairing a wide variety of chemically unrelated DNA damages. In spite of the plethora of new compounds introduced into modern societies it is unlikely that there will have been sufficient time to evolve new enzymes to accommodate to such environmental changes. Therefore, this repair system is without stringent substrate specificity and, as a consequence, is sensitive to a broad spectrum of DNA damage.

Keywords

Nucleotide Distance Double Incision Endonucleolytic Action AS02 76EV02814 UvrA Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Sancar, A. and Rupp, D.W. (1983) Cell 33, 249 - 260.PubMedCrossRefGoogle Scholar
  2. 2.
    Yeung, A.T., Mattes, W.M., Oh, E.Y. and Grossman, L. (1983) Proc. Nall Acad. Sci. USA 80, 6157 - 6161.CrossRefGoogle Scholar
  3. 3.
    Yeung, A.T., Mattes, W.M., Oh, E.Y. and Grossman, L. (1986) Nucleic Acids Res. 14, 8535 - 8556PubMedCrossRefGoogle Scholar
  4. 4.
    Yeung, A.T., Mattes, W.M., and Grossman, L. (1986) Nucleic Acids Res. 14, 2567 2582.Google Scholar
  5. 5.
    Caron, P.R., Kushner, S.R., and Grossman, L. (1985) Proc. Natl. Acad. Sci. USA 82, 4925 - 4929.PubMedCrossRefGoogle Scholar
  6. 6.
    Hussanin, I., Levy, T. and Sancar, A. (1985) Proc. Nall. Acad. Sci. U.S.A., 82, 6774 - 6778.CrossRefGoogle Scholar
  7. 7.
    Oh, E.Y. and Grossman, L. in preparationGoogle Scholar
  8. 8.
    Mazur, S. and Grossman, L. in preparationGoogle Scholar
  9. 9.
    Oh, E.Y. and Grossman, L. (1986) Nucleic Acids Res. 14, 8557 - 8571PubMedCrossRefGoogle Scholar
  10. 10.
    Oh, E.Y. and Grossman, L. (1987) Proc. Nail. Acad. Sci. U.S.A. 84, 3638 - 3642.CrossRefGoogle Scholar
  11. 11.
    Kacinski, B.M. and Rupp, W.D. (1984) Cancer Res. 44, 3489 - 3492PubMedGoogle Scholar
  12. 12.
    Husain, I., Chaney, S.G. and Sancar, A. (1985) J. Bacieriol. 163, 817 - 823Google Scholar
  13. 13.
    Sancar, A.,Franklin, K.A. and Sancar,G. (1985) J. Mol. Biol. 184, 725 - 734CrossRefGoogle Scholar
  14. 14.
    Beck, D.J., Popoff,S., Sancar, A., and Rupp, W.D, Nucleic Acids Res. 13, 7395 - 7412Google Scholar
  15. Van Houten,B.,Gamper,H.,Holbrook,S.R.,Hearst, J.E. and Sancar,A.,(1986) Proc. Nail. Acad. Sci. U.S.A. 83, 8077-8081Google Scholar
  16. 16.
    Van Houten,B.,Gamper,H.,Hearst,J.E. and Sancar,A.,(1986) J. Biol. Chem. 261, 14135-14141Google Scholar
  17. 17.
    Yeung, A.T., Jones, B.K., Capraro,M. and Chu,T. (1987) Nucleic Acids Res. 15, 4957 - 4971PubMedCrossRefGoogle Scholar
  18. 18.
    Popoff,S.C., Beck, D.J. and Rupp, W.D. (1987) Mutation Res., 183, 129 - 137CrossRefGoogle Scholar
  19. 19.
    Van Houten,B. and Sancar,A. (1987) J. Bacieriol. 169, 540 - 545Google Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • Lawrence Grossman
    • 1
  • Euk Y. Oh
    • 1
  • Sharlyn Mazur
    • 1
  • Paul Caron
    • 1
  1. 1.Department of BiochemistryThe Johns Hopkins University School of Hygiene and Public HealthBaltimoreUSA

Personalised recommendations