DNA Damage and Repair in Human Skin In Situ

  • Betsy M. Sutherland
  • Richard W. Gange
  • Steven E. Freeman
  • John C. Sutherland


Understanding the molecular and cellular origins of sunlight-induced skin cancers in man requires knowledge of the damages inflicted on human skin during sunlight exposure, as well as the ability of cells in skin to repair or circumvent such damage. Although repair has been studied extensively in procaryotic and eucaryotic cells—including human cells in culture—there are important differences between repair by human skin cells in culture and human skin in situ: quantitative differences in rates of repair (B. Sutherland et al., 1980; D’Ambrosio et al., 1981a), as well as qualitative differences, including the presence or absence of repair mechanisms (B. Sutherland et al., 1980; D’Ambrosio et al., 1981b).


Human Skin Rose Bengal Micrococcus Luteus Pyrimidine Dimer Molecular Length 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Achey, P. M., Woodhead, A. D., and Setlow, R. B., 1979, Photoreactivation of pyrimidine dimer in DNA from thyroid cells of the teleost, Poecilia formosa, Photochem. Photobiol., 29: 305.Google Scholar
  2. Bohr, V. A., Smith, C. A., Okumoto, D. S., and Hanawalt, P. C., 1985, DNA repair in an active gene: Removal of pyrimidine dimers from the DHFR gene of CHO cells is much more efficient than in the genome overall, Cell, 40: 359.Google Scholar
  3. Brash, D. E., and Hart, R. W., 1983, Fluorescent dye labeling to measure DNA damage in non-radiolabeled cells, in: “DNA Repair: A Laboratory Manual of Research Procedures,” E. C. Friedberg and P. C. Hanawalt, eds., Marcel Dekker, New York.Google Scholar
  4. Carrier, W. L., and Setlow, R. B., 1970, Endonuclease from Micrococcus luteus which has activity toward ultraviolet-irradiated deoxyribonucleic acid, J. Bacteriol., 102: 178.PubMedGoogle Scholar
  5. D’Ambrosio, S. M., Slazinski, L., Whetstone, J. W., and Lowney, E., 1981a, Excision repair of UV-induced pyrimidine dimers in human skin in vivo, J. Invest. Dermatol., 77: 311.Google Scholar
  6. D’Ambrosio, S. M., Whetstone, J. W., Slazinski, L., and Lowney, E., 1981b, Photorepair of pyrimidine dimers in human skin in vivo, Photochem. Photobiol., 34: 461.Google Scholar
  7. Ehmann, U. K., and Lett, J. T., 1973, Review and evaluation of molecular weight calculations from the sedimentation profiles of irradiated DNA, Radiation Res., 54: 152.PubMedCrossRefGoogle Scholar
  8. Erickson, L. C., Osieka, R., Sharkey, N. A., and Kohn, K. W., 1980, Measurement of DNA damage in unlabeled mammalian cells analyzed by alkaline elution and a fluorometric DNA assay, Anal. Biochem., 106: 169.Google Scholar
  9. Fornace, A. J., 1982, Measurement of M. luteus endonuclease-sensitive lesions by alkaline elution, Mut. Res., 94: 263.Google Scholar
  10. Freeman, S. E., Blackett, A. D., Monteleone, D. C., Setlow, R. B., Sutherland, B. M., and Sutherland, J. C., 1986a, Quantitation of radiation-, chemical-or enzyme-induced single strand breaks in nonradioactive DNA by alkaline gel electrophoresis: Application to pyrimidine dimers, Anal. Biochem., 158: 119.Google Scholar
  11. Freeman, S. E., Gange, R. W., Matzinger, E. A., and Sutherland, B. M., 1986b, Higher pyrimidine dimer yields in skin of normal humans with higher UV-B sensitivity, J. Invest. Dermatol., 86: 34.Google Scholar
  12. Freeman, S. E., Gange, R. W., Sutherland, J. C., Matzinger, E. A., and Sutherland, B. M., 1987, Production of pyrimidine dimers of human skin exposed in situ to UVA radiation, J. Invest. Dermatol., 88: 430.Google Scholar
  13. Ganesan, A. K., Smith, C. A., and van Zeeland, A. A., 1981, Measurement of pyrimidine dimer content of DNA in permeabilized bacterial or mammalian cells with endonuclease of bacteriophage T4, in: “DNA Repair: A Laboratory Manual of Research Procedures,” E. C. Friedberg and P. C. Hanawalt, eds., Marcel Dekker, New York.Google Scholar
  14. Kohn, K. W., Ewig, R. A. G., Erickson, L. C., and Zwelling, L. A., 1981, Measurement of strand breaks and cross-links, in: “DNA Repair: A Laboratory Manual of Research Procedures,” E. C. Friedberg and P. C. Hanawalt, eds., Marcel Dekker, New York.Google Scholar
  15. Peak, M. J., Peak, J. G., Foote, C. S., and Krinsky, N. I., 1984, Oxygen-independent direct deoxyribonucleic acid backbone breakage caused by Rose Bengal and visible light, J. Photochem., 25: 309.CrossRefGoogle Scholar
  16. Pulleyblank, D. E., Shure, M., and Vinograd, J., 1977, The quantitation of fluorescence by photography, Nucleic Acids Res., 4: 1409.PubMedCrossRefGoogle Scholar
  17. Setlow, R. B., and Carrier, W. L., 1966, Pyrimidine dimers in ultraviolet-irradiated DNA’s, J. Mol. Biol., 17: 237.Google Scholar
  18. Setlow, R. B., and Carrier, W. L., 1973, Endonuclease activity toward DNA irradiated in vitro by gamma rays, Nature New Biology, 241: 170.PubMedCrossRefGoogle Scholar
  19. Strickland, P. T., 1983, Detection of thymine dimers in DNA with monoclonal antibodies, in: “Application of Biological Markers to Carcinogen Testing,” H. A. Milman and S. Sell, eds., Plenum Publishing Corp., New York.Google Scholar
  20. Sutherland, B. M., Harber, L. C., and Kochevar, I. E., 1980, Pyrimidine dimer formation and repair in human skin, Cancer Res., 40: 3181.PubMedGoogle Scholar
  21. Sutherland, B. M., Oliveira, O. M., Ciarrocchi, G., Brash, D. E., Haseltine, W. A., Lewis, R. J., and Hanawalt, P. C., 1986, Substrate range of the 40,000 dalton DNA photoreactivating enzyme from Escherichia coli, Biochemistry, 25: 681.PubMedCrossRefGoogle Scholar
  22. Sutherland, B. M., and Shih, A. G., 1983, Quantitation of pyrimidine dimer content of non-radioactive deoxyribonucleic acid by electrophoresis in alkaline agarose gels, Biochemistry, 22: 745.PubMedCrossRefGoogle Scholar
  23. Sutherland, B. M., Sutherland, J. C., Brown, D. A., Epling, G. A., Kochevar, I. E., Van Camp, J. R., and Strickland, P. T., 1987, Photoimmunoendonucleases: Synthetic DNA lesion-specific endonucleases, Photochem. Photobiol., 45S: 21S.Google Scholar
  24. Sutherland, J. C., and Griffin, K. P., 1981, Absorption spectrum of DNA for wavelengths greater than 300 nm, Rad. Res., 86: 399.Google Scholar
  25. Sutherland, J. C., Monteleone, D. C., Mugavero, J. H., and Trunk, J., 1987, Unidirectional pulsed-field electrophoresis of single-and double-Google Scholar
  26. stranded DNA in agarose gels: Analytical expressions relating mobility and molecular length and their application in the measurement of strand breaks, Anal. Biochem., 162: 511.Google Scholar
  27. Sutherland, J. C., Monteleone, D. C., Trunk, J. C., and Ciarrocchi, G., 1984, Two-dimensional computer-controlled film-scanner: Quantitation of fluorescence from ethidium bromide-stained DNA gels, Anal. Bíochem., 139: 390.Google Scholar
  28. Sutherland, J. C., Lin, B., Monteleone, D. C., Sutherland, B. M., and Trunk, J., 1987, Electronic imaging system for direct and rapid quantitation of fluorescence from electrophoretic gels: Application to ethidium bromide-stained DNA, Anal. Biochem., 163: 446.Google Scholar
  29. Veatch, W., and Okada, S., 1969, Radiation-induced breaks of DNA in cultured mammalian cells, Biophys. J., 9: 330.Google Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • Betsy M. Sutherland
    • 1
  • Richard W. Gange
    • 2
  • Steven E. Freeman
    • 1
  • John C. Sutherland
    • 1
  1. 1.Biology DepartmentBrookhaven National LaboratoryUptonUSA
  2. 2.Department of Dermatology Harvard Medical SchoolMassachusetts General HospitalBostonUSA

Personalised recommendations