Repair of Secondary Lesions Arising in DNA after Treatment with Alkylating Agents

  • Jacques Laval
  • Timothy R. O’Connor
  • Serge Boiteux


Treatment of cells with alkylating agents results in DNA modification. The reaction products are alkylpurines, phosphotriesters and some minor products such as alkylpyrimidines. Some of them are repaired by alkyl DNA transferase while others are repaired by DNA glycosylases which generate as products the free alkylated base and an apurinic site (AP-site). This is a secondary lesion which is harmful to the cell and is actively repaired. Alkylation of the N7 of guanine labilizes i) the glycosidic bond yielding an AP-site and ii) the imidazole ring leading to the corresponding formamidopyrimidine, another secondary lesion. We review the biological implications of AP-sites and the formamidopyrimidine lesion which may form following alkylation of DNA.


Alkylating Agent Imidazole Ring Micrococcus Luteus Secondary Lesion Cruciform Structure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P.D. Lawley, Methylation of DNA by carcinogens: Some applications of chemical analytical methods. In ‘Screening test in chemical carcinogenesis“, IARC, Scientific publications, n° 12:181–208 (1976).Google Scholar
  2. 2.
    B. Singer and D. Grunberger, in: Molecular Biology of Mutagens and Carcinogens. Plenum Press. NY 143–199 (1983).CrossRefGoogle Scholar
  3. 3.
    S. Boiteux, O, Huisman and J. Laval, III-methyladenine residues in DNA induce the SOS function sfiA in Escherichia coli, EMBO J. 3: 2569–2573 (1984).PubMedGoogle Scholar
  4. 4.
    P. Karran, T. Lindahl, G. Ofsteng, B. Evensen and E. Seeberg, Escherichia coli mutants deficient in 3-methyladenine-DNA glycosylase, J. Mol. Biol. 140: 101–127 (1980).PubMedCrossRefGoogle Scholar
  5. 5.
    A. Loveless, Possible relevance of O6-alkylation of deoxyguanosine to the mutagenicity and carcinogenicity of nitrosamines and nitrosamides, Nature 223: 206–207 (1969).PubMedCrossRefGoogle Scholar
  6. 6.
    Laaval and F. Laval, Enzymology of DNA repair in: Molecular and Cellular aspects of carcinogen screening tests, Ì ARC Scientific publications, 27:55–73 (1980).Google Scholar
  7. 7.
    I. Teo, B. Sedgwick, M.W. Kilpatrick, T.V. McCarthy and T. Lindahl, The intracellular signal for induction of resistance to alkylating agents in E. coli, Cell 45: 315–324 (1986).PubMedCrossRefGoogle Scholar
  8. 8.
    J.A. Haines, C.B. Ree and L. Todd, Methylation of guanosine and related compounds with diazomethane, J. Chem. Soc., 5281 (1962).Google Scholar
  9. 9.
    N.D. Clarke, M. Kvaal and E. Seeberg, Cloning of Escherichia coli genes encoding 3-methyladenine DNA glycosylase I and II, Molec. Gen. Genet. 197: 368–372 (1984).PubMedCrossRefGoogle Scholar
  10. 10.
    S. Riazuddin and T. Lindahl, Properties of 3-methyladenine-DNA glycosylase from Escherichia coli, Biochemistry 17: 2110–2118 (1978).PubMedCrossRefGoogle Scholar
  11. 11.
    S. Bjelland and E. Seeberg, Purification and characterization of 3methyladenine DNA glycosylase I from Escherichia coli, Nucl. Acid. Res. 7: 2787–2801 (1987).CrossRefGoogle Scholar
  12. 12.
    L. Thomas, C.H. Yang and D.A. Goldthwait, Two DNA glycosylases in Escherichia coli which release primarily 3-methyladenine, Biochemistry 21: 1162–1169 (1982).PubMedCrossRefGoogle Scholar
  13. 13.
    J. Pierre and J. Laval, Cloning of Micrococcus luteus 3-methyladenineDNA glycosylase in Escherichia coli, Gene 43: 139–146 (1986).PubMedCrossRefGoogle Scholar
  14. 14.
    R. Male, D. Helland and K. Kleppe, FiRTication and characterization of 3-methyladenine-DNA glycosylase from calf thymus, J. Biol. Chem. 260: 1623–1629 (1985).PubMedGoogle Scholar
  15. 15.
    P.E. Gallagher and T.P. Brent, Further purification and characterization of human 3-methyladenine-DNA glycosylase. Evidence for broad specificity, Biochem. Biophys. Acta 782: 394–401 (1984).PubMedCrossRefGoogle Scholar
  16. 16.
    P.E. Gallagher and T.P. Brent, Partial purification of a human 3methyladenine-DNA glycosylase from human placenta, Biochemistry 21: 6404–6409 (1982).PubMedCrossRefGoogle Scholar
  17. 17.
    Y. Nakabeppu, H. Kondo and M. Sekiguchi, Cloning and characterization of the alkA gene of Escherichia coli that encodes 3-methyladenine DNA glycosylase II, J. Biol. Chem. 259: 13723–13729.Google Scholar
  18. 18.
    R. Shapiro, Damage to DNA caused by hydrolysis, in: Chromosome Damage and Repair, E. Seeberg and K. Kleppe, ed., Plenum Press New York and London, pp: 3–18 (1981).Google Scholar
  19. 19.
    S.G. Rogers and B. Weiss, Exonuclease III of Escherichia coli K-12, and AP Endonuclease, Methods in Enzymology 65: 201–211 (1980).PubMedCrossRefGoogle Scholar
  20. 20.
    R.P. Cunningham, S.M. Saporito, S.G. Spitzer and B. Weiss, Endonuclease IV (nfo) mutant of Escherichia coli, J. Bact. 168: 1120–1127 (1986).PubMedGoogle Scholar
  21. 21.
    R.P. Cunningham and B. Weiss, Endonuclease III (nth) mutants of Escherichia coli, Proc. Natl. Acad. Sci. USA 82: 474–477 (1985).PubMedCrossRefGoogle Scholar
  22. 22.
    V. Bailly and W.G. Verly, Escherichia coli endonuclease III is not an endonuclease but a 13-elimination catalyst, Biochem. J. 242: 565–572.Google Scholar
  23. 23.
    P.R. Armei and S.S. Wallace, Apurinic endonucleases from Saccharomyces cerevisiae, Nucl. Acids Res. 5: 3347–3356 (1978).CrossRefGoogle Scholar
  24. 24.
    J. Svachulova, J. Satava and J. Veliminsky, A Barley Endonuclease specific for apurinic DNA, Eur. J. Biochem. 87: 215–220 (1978).PubMedCrossRefGoogle Scholar
  25. 25.
    L. Thibodeau and W.G. Verly, Purification and properties of a plant Endonuclease specific for apurinic sites, J. Biol. Chem. 252: 3304–3309 (1977).PubMedGoogle Scholar
  26. 26.
    C.M. Kane and S. Linn, Purification and characterization of an Apurinic/Apyrimidinic Endonuclease from HeLa cells, J. Biol. Chem. 256: 3405–3415 (1981).PubMedGoogle Scholar
  27. 27.
    P.D. Lawley and D.J. Orr, Specific excision of methylation products from DNA of Escherichia coli treated with N-methyl-N’-nitro-N-nitrosoguanidine, Chem. Biol. Interact. 2: 154–157 (1970).PubMedCrossRefGoogle Scholar
  28. 28.
    S. Boiteux, J. Belleney, B.P. Roques and J. Laval, Two rotameric forms of open ring 7-methylguanine are present in alkylated polynucleotides, Nucl. Acids. Res. 12: 5429–5439.Google Scholar
  29. 29.
    S. Boiteux and J. Laval, Imidazole open ring 7-methylguanine: An inhibitor of DNA synthesis, Biochem. Biophys. Res. Commun. 110: 552–558 (1985).CrossRefGoogle Scholar
  30. 30.
    C.J. Chetsanga and T. Lindahl, Release of 7-methylguanine residues whose imidazole ring have been opened from damaged DNA, by a DNAglycosylase from E. coli, Nucl. Acids Res. 6: 3673–3683 (1979).PubMedCrossRefGoogle Scholar
  31. 31.
    S. Boiteux, T.R. O’Connor and J. Laval, Formamidopyrimidine-DNA glycosylase of Escherichia coli: Cloning and sequencing of the fpg structural gene and overproduction of the protein, EMBO J. 6: 3177–3183 (1987).PubMedGoogle Scholar
  32. 32.
    B. Demple, A. Johnson and D. Fung, Exonuclease III and endonuclease IV remove 3’ blocks from DNA synthesis primers in H202-damaged Escherichia coli, Proc. Natl. Acad. Sci. USA. 13: 7731–7735 (1986).CrossRefGoogle Scholar
  33. 33.
    S. Boiteux and J. Laval, Coding properties of Poly(deoxycytidilic acid) templates containing uracil or apyrimidinic sites: In vitro modulation of mutagenesis by deoxyribonucleic acid repair enzymes, Biochemistry 21: 6746–6751 (1982).PubMedCrossRefGoogle Scholar
  34. 34.
    L.A. Loeb, Apurinic sites as mutagenic intermediates, Cell 40: 483–484 (1985).PubMedCrossRefGoogle Scholar
  35. 35.
    R.M. Shaaper, B.W. Glickman, L.A. Loeb, Role of depurination in muta-genesis by chemical carcinogens, Cancer Res. 42: 3480–3485 (1982).Google Scholar
  36. 36.
    A. Gentil, A. Margot and A. Sarasin, Apurinic sites cause mutations in simian virus 40, Mut. Res. 129: 141–147 (1984).CrossRefGoogle Scholar
  37. 37.
    N. Müller and G. Eisenbrand, The influence of N7-substituents on the stability of N7-alkylated guanosines, Chem. Biol. Interact. 53: 173–181 (1985).PubMedCrossRefGoogle Scholar
  38. 38.
    T.R. Irvin and G.N. Wogan, Quantitation of aflatoxin B, adduction within the ribosomal RNA gene sequences of rat liver DNA, Proc. Natl. Acad. Sci. USA 81: 664–668 (1984).PubMedCrossRefGoogle Scholar
  39. 39.
    E. Kriek and J.G. Westra, Structural identification of the pyrimidine derivatives formed from N-(deoxyguanosin-8-y1)-2-aminofluorene in aqueous solution at alkaline pH, Carcinogenesis 1: 459–468 (1980).PubMedCrossRefGoogle Scholar
  40. 40.
    C.J. Chetsanga, G. Polidori and M. Mainwaring, Analysis and excision of phosphoramide mustard-deoxyguanosine adducts in DNA, Cancer Res. 42: 2616–2621 (1982).PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1989

Authors and Affiliations

  • Jacques Laval
    • 1
  • Timothy R. O’Connor
    • 1
  • Serge Boiteux
    • 1
  1. 1.Groupe “Réparation des lésions radio et chimioinduites”Institut Gustave RoussyVillejuif CédexFrance

Personalised recommendations