Discrepancy Theorems via Two-Sided Bounds for Potentials

  • Vladimir V. Andrievskii
  • Hans-Peter Blatt
Part of the Springer Monographs in Mathematics book series (SMM)


In potential theory it is well known that a mass distribution σ is uniquely determined by its potential U σ . In this chapter we shall consider different ways of making this fact more precise for signed measures σ = σ +σ that are supported on curves or arcs L.


Conformal Mapping Signed Measure Jordan Curve Positive Part Discrepancy Theorem 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Historical Comments

  1. [7]
    F. Amoroso, M. Mignotte (1996): On the distribution of the roots of polynomials. Ann. Inst. Fourier (Grenoble), 46: 1275–1291.MathSciNetMATHCrossRefGoogle Scholar
  2. [19]
    V.V. Andrievskii, H.-P. Blatt (1997): A discrepancy theorem on quasiconformal curves. Constr. Approx., 13: 363–379.MathSciNetMATHCrossRefGoogle Scholar
  3. [21]
    V.V. Andrievskii, H.-P. Blatt, H.N. Mhaskar (2001): A local discrepancy theorem. Indag. Math., N.S., 12 (1): 23–39.MathSciNetMATHCrossRefGoogle Scholar
  4. [28]
    H.-P. Blatt (1992): On the distribution of simple zeros of polynomials. J. Approx. Theory, 69: 250–268.MathSciNetMATHCrossRefGoogle Scholar
  5. [34]
    H.-P. Blatt, H.N. Mhaskar (1993): A general discrepancy theorem. Ark. Mat., 31: 219–246.MathSciNetMATHCrossRefGoogle Scholar
  6. [177]
    V. Totik (1993): Distribution of simple zeros of polynomials. Acta Math., 170: 1–28.MathSciNetMATHCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Vladimir V. Andrievskii
    • 1
  • Hans-Peter Blatt
    • 2
  1. 1.Department of Mathematics and Computer ScienceKent State UniversityKentUSA
  2. 2.Mathematisch-Geographische FakultätKatholische Universität EichstättEichstättGermany

Personalised recommendations