Skip to main content

Part of the book series: Springer Monographs in Mathematics ((SMM))

  • 419 Accesses

Abstract

The classical theorems of Jentzsch and Szegö concern the limiting behavior of the zeros of the partial sums of a power series. More precisely, if

EquationSource% MathType!MTEF!2!1!+- % feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4CamaaBa % aaleaacaWGUbaabeaakmaabmaabaGaamOEaaGaayjkaiaawMcaaiab % g2da9maaqahabaGaamyyamaaBaaaleaacaWGRbaabeaakiaadQhada % ahaaWcbeqaaiaadUgaaaaabaGaam4Aaiabg2da9iaaicdaaeaacaWG % UbaaniabggHiLdGccaGGSaGaamOBaiabg2da9iaaicdacaGGSaGaaG % ymaiaacYcacaaIYaGaaiilaiablAciljaacYcaaaa!4E6B!]]</EquationSource><EquationSource Format="TEX"><![CDATA[$$ {s_n}\left( z \right) = \sum\limits_{k = 0}^n {{a_k}{z^k}} ,n = 0,1,2, \ldots ,$$

are the partial sums of a power series EquationSource% MathType!MTEF!2!1!+- % feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaamOzamaabm % aabaGaamOEaaGaayjkaiaawMcaaiabg2da9maaqaeabaWaa0baaSqa % aiaadUgacqGH9aqpcaaIWaaabaGaeyOhIukaaOGaamyyamaaBaaale % aacaWGRbaabeaakiaadQhadaahaaWcbeqaaiaadUgaaaaabeqab0Ga % eyyeIuoaaaa!44F6!]]</EquationSource><EquationSource Format="TEX"><![CDATA[$$f\left( z \right) = \sum {_{k = 0}^\infty {a_k}{z^k}} $$ having finite positive radius of convergence ρ, then Jentzsch [91] proved that each point of the circle of convergence C ρ := {z: |z| = ρ} is a limit point of zeros of polynomials s n (z), n = 1, 2,... . Szegö [170] substantially improved this result by showing that there is a subsequence EquationSource% MathType!MTEF!2!1!+- % feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaWaaiWaaeaaca % WGUbWaaSbaaSqaaiaadUgaaeqaaaGccaGL7bGaayzFaaWaa0baaSqa % aiaadUgacqGH9aqpcaaIXaaabaGaeyOhIukaaaaa!3E8D!]]</EquationSource><EquationSource Format="TEX"><![CDATA[$$\left\{ {{n_k}} \right\}_{k = 1}^\infty $$ for which the zeros of the partial sums EquationSource% MathType!MTEF!2!1!+- % feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4CamaaBa % aaleaacaWGUbaabeaakmaaBaaaleaadaWgaaadbaGaam4Aaaqabaaa % leqaaOWaaeWaaeaacaWG6baacaGLOaGaayzkaaaaaa!3BFB!]]</EquationSource><EquationSource Format="TEX"><![CDATA[$${s_n}_{_k}\left( z \right)$$ are uniformly distributed in angle; that is, if S(α, β) is the sector

EquationSource% MathType!MTEF!2!1!+- % feaagCart1ev2aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaam4uamaabm % aabaGaeqySdeMaaiilaiabek7aIbGaayjkaiaawMcaaiabg2da9maa % cmaabaGaamOEaiabgIGioprr1ngBPrwtHrhAYaqeguuDJXwAKbstHr % hAGq1DVbacfaGae8NaHmKaaiOoaiabeg7aHjabgYda8iGacggacaGG % YbGaai4zaiaadQhacqGH8aapcqaHYoGyaiaawUhacaGL9baacaGGSa % GaeqySdeMaeyipaWJaeqOSdiMaeyipaWJaaGOmaiabec8aWjabgUca % Riabeg7aHbaa!614C!]]</EquationSource><EquationSource Format="TEX"><![CDATA[$$\left( {\alpha ,\beta } \right) = \left\{ {z \in \mathbb{C}:\alpha < \arg z < \beta } \right\},\alpha < \beta < 2\pi + \alpha $$

, and Z n (A) denotes the number of zeros of s n in the set A, then

EquationSource% MathType!MTEF!2!1!+- % feaagCart1ev2aaatCvAUfKttLearuavP1wzZbItLDhis9wBH5garm % Wu51MyVXgaruWqVvNCPvMCaebbnrfifHhDYfgasaacH8srps0lbbf9 % q8WrFfeuY-Hhbbf9v8qqaqFr0xc9pk0xbba9q8WqFfea0-yr0RYxir % -Jbba9q8aq0-yq-He9q8qqQ8frFve9Fve9Ff0dmeaabaqaaiaacaGa % aeqabaWaaeaaeaaakeaacaaMe8UaaGjbVpaaxababaaeaaaaaaaaa8 % qacyGGSbaBcqGGPbqAcqGGTbqBaSWdaeaapeGaem4AaSMaeyOKH4Qa % eyOhIukapaqabaGcdaWcaaqaaerbfv3ySLgzaGqbc8qacqWFAbGwpa % WaaSbaaSqaa8qacqWFUbGBdaWgaaadbaGae83saSeabeaaaSWdaeqa % aOWdbmaabmaapaqaa8qacqWFtbWudaqadaWdaeaapeGaeqOSdiMaey % OeI0IaeqySdegacaGLOaGaayzkaaaacaGLOaGaayzkaaaapaqaa8qa % cqWGUbGBpaWaaSbaaSqaa8qacqWGRbWAa8aabeaaaaGcpeGaeyypa0 % ZaaSaaa8aabaWdbiabek7aIjabgkHiTiabeg7aHbWdaeaapeGaeGOm % aiJaeqiWdahaaaaa!571C!]]</EquationSource><EquationSource Format="TEX"><![CDATA[$$ \;\;\mathop {\lim }\limits_{k \to \infty } \frac{{{Z_{{n_K}}}\left( {S\left( {\beta - \alpha } \right)} \right)}}{{{n_k}}} = \frac{{\beta - \alpha }}{{2\pi }}$$
(0.1)

for all sectors S(α, β).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Historical Comments

  1. A. Bloch, G. Pblya (1931): On the roots of certain algebraic questions. Proc. London Math. Soc., 33: 101–114.

    Google Scholar 

  2. E. Schmidt (1932): Ober algebraische Gleichungen vom Pôlya-Bloch-Typus, Sitzungsber. Preuss. Akad. Wiss. Phys.-Math. Kl., XXII: 321.

    Google Scholar 

  3. I. Schur (1933): Untersuchungen liber algebraische Gleichungen I. Bemerkungen zu einem Satz von E. Schmidt. Sitzungsber. Preuss. Akad. Wiss. Phys.-Math. Kl., X: 403–428.

    Google Scholar 

  4. G. Szegö (1934): Bemerkungen zu einem Satz von E. Schmidt über algebraische Gleichungen, Sitzungsber. Berl. Akad.: 86–98

    Google Scholar 

  5. T. Ganelius (1953): Sequences of analytic functions and their zeros. Ark. Mat. 3: 1–50.

    Article  MathSciNet  Google Scholar 

  6. F. Amoroso, M. Mignotte (1996): On the distribution of the roots of polynomials. Ann. Inst. Fourier (Grenoble), 46: 1275–1291.

    Article  MathSciNet  MATH  Google Scholar 

  7. R. Grothmann (1988): On the zeros of sequences of polynomials. J. Approx. Theory, 61: 351–359.

    Article  MathSciNet  Google Scholar 

  8. H.-P. Blatt, E.B. Saff, M. Simkani (1988): Jentzsch-Szegd type theorems for the zeros of best approximants. J. London Math. Soc., 38: 307–316.

    Article  MathSciNet  Google Scholar 

  9. R. Grothmann (1989): Ostrowski gaps, overconvergence and zeros of polynomials. Approximation Theory VI: Vol 1 (ed. C.K. Chui, L.L. Schumaker, and J.D. Ward ), Academic Press: 303–306.

    Google Scholar 

  10. R. Grothmann (1992): Interpolation Points and Zeros of Polynomials in Approximation Theory. Habilitationsschrift. Katholische Universität Eichstätt.

    Google Scholar 

  11. V.V. Andrievskii, H.-P. Blatt (1999): Erdfis-Turdn Type Theorems on Quasiconformal Curves and Arcs. J. Approx. Theory, 97: 334–365.

    Article  MathSciNet  MATH  Google Scholar 

  12. H.-P. Blatt, R. Grothmann (1991): Erdös-Turcin theorems on a system of Jordan curves and arcs. Constr. Approx., 7: 19–47.

    Article  MathSciNet  MATH  Google Scholar 

  13. P.C. Rosenbloom (1955): Distribution of zeros of polynomials. Lectures on Functions of a Complex Variable. Ann Arbor: 265–286.

    Google Scholar 

  14. P. Sjögren (1972): Estimates of mass distributions from their potentials and energies. Ark. Mat., 10: 59–77.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2002 Springer Science+Business Media New York

About this chapter

Cite this chapter

Andrievskii, V.V., Blatt, HP. (2002). Zero Distribution of Polynomials. In: Discrepancy of Signed Measures and Polynomial Approximation. Springer Monographs in Mathematics. Springer, New York, NY. https://doi.org/10.1007/978-1-4757-4999-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-4757-4999-1_2

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-3146-7

  • Online ISBN: 978-1-4757-4999-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics