Advertisement

Auxiliary Facts

  • Vladimir V. Andrievskii
  • Hans-Peter Blatt
Part of the Springer Monographs in Mathematics book series (SMM)

Abstract

The aim of this preliminary chapter is to recall some of the results and general principles of potential theory, geometric function theory, the theory of quasiconformal mappings, and approximation theory. In many cases the statements of theorems and lemmas are supported by proofs if they are not published in monographs or by exact reference to where they can be found. For detailed proofs of all other facts and further discussion we recommend standard introductory texts such as Tsuji [178], Saff and Totik [156] (potential theory), Goluzin [75], Pommerenke [146, 147], Duren [52] (geometric function theory), Ahlfors [3, 4], Lehto and Virtanen [112] (theory of quasiconformal mappings in the plane), Walsh [181], Smirnov and Lebedev [165], Gaier [62], Andrievskii, Belyi, and Dzjadyk [17] (approximation theory in the complex plane).

Keywords

Quasiconformal Mapping Equilibrium Measure Jordan Domain Auxiliary Fact Faber Polynomial 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Historical Comments

  1. [43]
    L. Carleson (1964): Mergelyan’s theorem on uniform polynomial approximation. Math. Scand., 15: 167–175.MathSciNetMATHGoogle Scholar
  2. [117]
    K. Löwner (1919): Über Extremumsätze bei der konformen Abbildung des Aufßeren des Einheitskreises. Math. Z., 3: 65–77.MathSciNetMATHCrossRefGoogle Scholar
  3. [149]
    S. Rickman (1966): Characterization of quasiconformal arcs. Ann. Acad. Sci. Fenn. Ser. A I Math., 395: 1–30.MathSciNetGoogle Scholar
  4. [10]
    V.V. Andrievskii (1981): Direct theorems of approximation theory on quasiconformal arcs. Math. USSR-Izv., 16: 221–238.MathSciNetCrossRefGoogle Scholar
  5. [14]
    V.V. Andrievskii (1990): Constructive characterization of harmonic functions in domains with a quasiconformal boundary. Math. USSR-Izv., 34: 441–454.MathSciNetCrossRefGoogle Scholar
  6. [26]
    V.I. Belyi, V.M. Mikljukov (1974): Some properties of conformal and quasi-conformal mappings and direct theorems of the constructive theory of functions. Izv. Akad. Nauk SSSR Ser. Mat., 38: 1343–1361 (Russian).Google Scholar
  7. [25]
    V.I. Belyi (1977): Conformal mappings and the approximation of analytic functions in domains with a quasiconformal boundary. Math. USSR-Sb., 31: 289–317.MATHCrossRefGoogle Scholar
  8. [147]
    Ch. Pommerenke (1992): Boundary behaviour of conformal maps. Berlin: Springer-Verlag.MATHCrossRefGoogle Scholar
  9. [142]
    Ch. Pommerenke (1964): Über die Faberschen Polynome schlichter Funktionen. Math. Z., 85: 197–208.MathSciNetMATHCrossRefGoogle Scholar
  10. [44]
    E.W. Cheney (1966): Introduction to Approximation Theory. New York: Mc Graw-Hill.MATHGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2002

Authors and Affiliations

  • Vladimir V. Andrievskii
    • 1
  • Hans-Peter Blatt
    • 2
  1. 1.Department of Mathematics and Computer ScienceKent State UniversityKentUSA
  2. 2.Mathematisch-Geographische FakultätKatholische Universität EichstättEichstättGermany

Personalised recommendations