Advertisement

Crystal Growth pp 109-184 | Cite as

The Verneuil Process

  • R. Falckenberg

Abstract

The idea and basic embodiment of the flame-fusion process were announced by Verneuil in 1902; initially the only purpose of the process was to make gem rubies.(1,2) The chief virtues of this method as far as today’s technology and research are concerned are that it can be applied to a variety of oxides, and that no crucible is required to hold the melt. Problems connected with the use of a crucible, such as contamination by or reaction with the crucible material, are thereby avoided, an advantage that is more important the higher the melting point of the crystal.

Keywords

Growth Front Powder Flow Sapphire Crystal Spinel Crystal Radial Temperature Gradient 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Verneuil, Ann. Chim. Phys. 3, 20 (1904); Compt. Rend. 135, 791 (1902).Google Scholar
  2. 2.
    K. Nassau, J. Crystal Growth 13/14, 12 (1972).ADSCrossRefGoogle Scholar
  3. 3.
    T. B. Reed, J. Appl. Phys. 32, 2534 (1961)ADSCrossRefGoogle Scholar
  4. M. v. Ardenne, E. D. Knebel, H. Wachtel, and P. Wiese, Krist. Techn. 1, 437 (1966)CrossRefGoogle Scholar
  5. W. J. Alford and W. H. Bauer, J. Phys. Chem. Solids Suppl. No. 1, 71 (1967)Google Scholar
  6. D. T. Williams and W. A. Smith, J. Am. Ceram. Soc. 51, 32 (1968)CrossRefGoogle Scholar
  7. D. R. Kinloch and C. E. Birchenall, J. Crystal Growth 19, 105 (1973).ADSCrossRefGoogle Scholar
  8. 4.
    R. E. De La Rue and F. A. Halden, Rev. Sei. Instrum. 31, 35 (1960)ADSCrossRefGoogle Scholar
  9. F. A. Halden and R. Sedlacek, Rev. Sci. Instrum. 34, 622 (1963)ADSCrossRefGoogle Scholar
  10. R. W. Bartlett, F. A. Halden, and J. W. Fowler, Rev. Sei. Instrum. 38, 1313 (1967).ADSCrossRefGoogle Scholar
  11. 5.
    M. J. Musatov, Sov. J. Opt. Technol. 42, 461 (1975).Google Scholar
  12. 6.
    J. Ricard, IEEE SOS Workshop, Lake Tahoe, Calfornia, September 1975 (unpublished).Google Scholar
  13. 7.
    R. Falckenberg, J. Crystal Growth 29, 195 (1975).ADSCrossRefGoogle Scholar
  14. 8.
    F. B. Khambatta, P. J. Gielisse, M. P. Wilson, J. A. Adamski, and C. Sahagian, J. Crystal Growth 13/14, 710 (1972).ADSCrossRefGoogle Scholar
  15. 9.
    V. A. Shchelkotunov and V. N. Danilov, Inorg. Materials 5, 517 (1969).Google Scholar
  16. 10.
    E. E. Shpilrain, K. A. Yakimovich, and A. F. Tsitarkin, High Temp.-High Press. 5, 191 (1973).Google Scholar
  17. 11.
    L. S. Barkhatov, D. N. Kagan, A. F. Tsitsarkin, E. E. Shpilrain, and K. A. Yakimovich, High Temp.-High Press. 11, 1063 (1973).Google Scholar
  18. 12.
    J. J. Rasmussen and R. P. Nelson, J. Am. Ceram. Soc. 54, 398 (1971).CrossRefGoogle Scholar
  19. 13.
    D. D. Eley, ed., Adhesion, Oxford University Press, London (1961).Google Scholar
  20. 14.
    F. Ordway and P. R. Miller, Am. Ceram. Soc. Bull. 43, 253 (1964).Google Scholar
  21. 15.
    K. Shiroki, Japan J. Appl. Phys. 8, 1082 (1969).ADSCrossRefGoogle Scholar
  22. 16.
    J. Kvapil, B. Perner, and J. Kvapil, Krist. Techn. 9, 503 (1974).CrossRefGoogle Scholar
  23. 17.
    J. G. Grabmaier, J. Crystal Growth 5, 105 (1969).ADSCrossRefGoogle Scholar
  24. 18.
    J. A. Adamski, R. C. Powell, and J. L. Sampson, J. Crystal Growth 3/4, 246 (1968).ADSCrossRefGoogle Scholar
  25. 19.
    R. Falckenberg and H. Wörl, Materials Res. Bull. 9, 519 (1974).CrossRefGoogle Scholar
  26. 20.
    A. Neuhaus and K. Brenner, Chem.-Ing. Technol. 27, 320 (1955).Google Scholar
  27. 21.
    A. Neuhaus, Fortschr. Min. 34, 35 (1956).Google Scholar
  28. 22.
    J. N. Akimovich, Ukrain. Fiz. Zh. 14, 1197 (1969).Google Scholar
  29. 23.
    J. Zemlicka, Ber. Geol. Ges. DDR, 7, 492 (1962).Google Scholar
  30. 24.
    H. S. Bagdasarov, G. V. Berezhkova, V. G. Gorovkov, and A. E. Smirnov, J. Crystal Growth 22, 61 (1974).ADSCrossRefGoogle Scholar
  31. 25.
    A. Müller and M. Wilhelm, Z. Naturforsch. 19a, 254 (1964).Google Scholar
  32. 26.
    D. T. J. Hurle, J. Crystal Growth 13/14, 39 (1972).ADSCrossRefGoogle Scholar
  33. 27.
    H. Pink, Phys. Status Solidi 21, Kill (1967).Google Scholar
  34. 28.
    H. Wörl and R. Falckenberg, Materials Res. Bull. 11, 807 (1976).CrossRefGoogle Scholar
  35. 29.
    M. I. Musatov, Sov. J. Opt. Technol. 41, 217 (1974).Google Scholar
  36. 30.
    T. H. Shankland, Am. Ceram. Soc. Bull. 46, 1160 (1967).Google Scholar
  37. 31.
    R. Falckenberg, J. Crystal Growth 13/14, 723 (1972).ADSCrossRefGoogle Scholar
  38. 32.
    J. Kvapil, Krist. Techn. 4, 117 (1969).CrossRefGoogle Scholar
  39. 33.
    V. L. Indenbom and G. E. Tomilovskii, Kristallografiya 3, 593 (1958).Google Scholar
  40. 34.
    B. Lewis, R. N. Pease, and H. S. Taylor, High-Speed Aerodynamics and Jet Propulsion Combustion Processes, University Press, Princeton, New Jersey (1956).Google Scholar
  41. 35.
    W. Heywang and G. Ziegler, Z. Naturforsch. 9a, 561 (1954).ADSGoogle Scholar
  42. 36.
    W. Heywang, Z. Naturforsch. 11a, 238 (1956).ADSGoogle Scholar
  43. 37.
    R. A. Laudise, The Growth of Single Crystals, Prentice-Hall, Englewood Cliffs, New Jersey (1970).Google Scholar
  44. 38.
    S. V. Tsivinsky, Krist. Techn. 10, 5 (1975).CrossRefGoogle Scholar
  45. 39.
    H. Stroppe, Wiss. Z. TH Magdeburg 15, 473 (1971).Google Scholar
  46. 40.
    S. Hähle, D. Pötzschke, H. Beyrich, and H. Markas, Krist. Techn. 11, 91 (1976).CrossRefGoogle Scholar
  47. 41.
    R. A. Keeley and M. T. Sprackling, J. Phys. D: Appl. Phys. 9, 615 (1976).ADSCrossRefGoogle Scholar
  48. 42.
    B. H. Kear and P. L. Pratt, Acta Met. 6, 457 (1958).CrossRefGoogle Scholar
  49. 43.
    Ch. Zaminer, Ber. Dtsch. Keram. Ges. 42, 73 (1965).Google Scholar
  50. 44.
    L. M. Davies, Proc. Br. Ceram. Soc. 6, 1 (1966).Google Scholar
  51. 45.
    See, e.g., L. Föppl and E. Mönch, Praktische Spannungsoptik, Springer-Verlag, Berlin and New York (1972).CrossRefGoogle Scholar
  52. 46.
    J. Kvapil, Krist. Techn. 4, 123 (1969).CrossRefGoogle Scholar
  53. 47.
    J. Kvapil, J. Sulovsky, and J. Kvapil, Krist. Techn. 7, 1169 (1972).CrossRefGoogle Scholar
  54. 48.
    K. H. Brauer, J. Feuerstake, F. Fröhlich, and U. Mohr, Krist. Techn. 8, 253 (1973).CrossRefGoogle Scholar
  55. 49.
    Y. J. Sirotin, Sov. Phys.-Crystallogr. 1, 556 (1956).Google Scholar
  56. 50.
    K. A. Parsons, J. Appl. Phys. 24, 469 (1953).ADSCrossRefGoogle Scholar
  57. 51.
    R. C. O’Rourke and A. W. Saenz, Qt. Appl. Math. 8, 303 (1950).MathSciNetMATHGoogle Scholar
  58. 52.
    C. N. Reid, Deformation Geometry for Materials Scientists, Pergamon, Oxford (1973).MATHGoogle Scholar
  59. 53.
    J. B. Wachtman and L. H. Maxwell, J. Am. Ceram. Soc. 37, 291 (1954).CrossRefGoogle Scholar
  60. 54.
    R. Scheuplein and P. Gibbs, J. Am. Ceram. Soc. 45, 439 (1962).CrossRefGoogle Scholar
  61. 55.
    H. Palmour III, Proc. Br. Ceram. Soc. 6, 209 (1966).Google Scholar
  62. 56.
    K. C. Radford and C. W. A. Newey, Proc. Br. Ceram. Soc. 9, 131 (1967).Google Scholar
  63. 57.
    J. Grabmaier and C. Watson, Phys. Status Solidi 23, K7 (1968).ADSCrossRefGoogle Scholar
  64. 58.
    L. Merker, J. Am. Ceram. Soc. 45, 366 (1962).CrossRefGoogle Scholar
  65. 59.
    A. H. Heuer and J. P. Roberts, Proc. Br. Ceram. Soc. 6, 17 (1966).Google Scholar
  66. 60.
    R. Falckenberg, J. Electrochem. Soc. 12363 (1976).CrossRefGoogle Scholar
  67. 61.
    D. A. Curtis and J. S. Thorp, Br. J. Appl. Phys. 16, 734 (1965).ADSCrossRefGoogle Scholar
  68. 62.
    J. S. Thorp, D. A. Curtis, and D. R. Mason, Br. J. Appl. Phys. 15, 775 (1964).ADSCrossRefGoogle Scholar
  69. 63.
    K. Shiroki, Jap. J. Appl. Phys. 6, 121 (1967).ADSCrossRefGoogle Scholar
  70. 64.
    W. Seifert, Thesis, University of Munich (1969).Google Scholar
  71. 65.
    S. M. Wiederhorn, B. J. Hockey, and D. E. Roberts, Phil. Mag. 64, 783 (1973).ADSCrossRefGoogle Scholar
  72. 66.
    J. B. Wachtman and L. H. Maxwell, J. Am. Ceram. Soc. 42, 432 (1959).CrossRefGoogle Scholar
  73. 67.
    H. S. Bagdasarov, G. V. Berezhkova, V. G. Govorkov, E. P. Kozlovskaya, E. A. Fedorov, and M. A. Chernysheva, Krist. Techn. 8, 507 (1973).CrossRefGoogle Scholar
  74. 68.
    W. Seifert, J. Crystal Growth 12, 17 (1972).ADSCrossRefGoogle Scholar
  75. 69.
    K. Shiroki, Rev. Sci. Instrum. 38, 1541 (1967).ADSCrossRefGoogle Scholar
  76. 70.
    R. S. Mitchell, Rev. Sci. Instrum. 36, 1667 (1965).ADSCrossRefGoogle Scholar
  77. 71.
    R. H. Arlett and M. Robbins, J. Am. Ceram. Soc. 50, 273 (1967).CrossRefGoogle Scholar
  78. 72.
    L. M. Belyaev, C. Barta, A. A. Popova, A. F. Zakatov, and J. Zemlicka, IVth Conference on Single Crystals, Turnov, CSSR (1961).Google Scholar
  79. 73.
    Fabricated by Metals Research, Melbourne, England.Google Scholar
  80. 74.
    Unpublished work at Institute of Crystallography, Moscow; see Chapter 4 by C. H. L. Goodman following this chapter.Google Scholar
  81. 75.
    R. C. Pastor and A. C. Pastor, Materials Res. Bull. 1, 275 (1966).CrossRefGoogle Scholar
  82. 76.
    A. C. Pastor and R. C. Pastor, Materials Res. Bull. 2, 555 (1967).CrossRefGoogle Scholar
  83. 77.
    A. Goldsmith, T. E. Waterman, and H. Y. Hirschhorn, Handbook of Thermophysical Properties of Solids, Vol. 3, Macmillan, New York (1961).Google Scholar
  84. 78.
    J. F. Lynch, C. G. Ruderer, and W. H. Duckworth, Engineering Properties of Ceramics, Defense Documentation Center, Alexandria, Virginia.Google Scholar
  85. 79.
    E. Ryshkewitch, Oxide Ceramics, Academic Press, New York (1960).Google Scholar
  86. 80.
    C. Barta, J. Zemlicka, and V. Kment, IVth Conference on Single Crystals, Turnov, CSSR (1961).Google Scholar
  87. 81.
    A. G. Jones, Analytical Chemistry, Butterworth, London (1959).Google Scholar
  88. 82.
    D’ Ans-Lax, Taschenbuch für Chemiker und Physiker, Springer-Verlag, Berlin (1970).Google Scholar
  89. 83.
    W. H. Bauer and W. G. Field, in The Art and Science of Growing Crystals, J. J. Gilman (ed.), Wiley, London (1963).Google Scholar
  90. 84.
    D. Haberland, Mber. Dtsch. Akad. Wiss. Berlin 4, 376 (1962).Google Scholar
  91. 85.
    M. Yamamoto, S. Arino, and T. Sato, Sci. Rep. Res. Inst. Tohoku Univ. 22, 156 (1971).Google Scholar
  92. 86.
    N. Peters, Int. J. Heat Mass Transfer 19, 385 (1976).ADSMATHCrossRefGoogle Scholar
  93. 87.
    P. A. Libby and C. Economos, Int. J. Heat Mass Transfer 6, 113 (1963).CrossRefGoogle Scholar
  94. 88.
    B. Lewis and G. von Elbe, Combustion Flames and Explosions of Gases, Academic Press, New York (1971).Google Scholar
  95. 89.
    K. Annamalai and P. Durbetaki, Combustion and Flame 25, 137 (1975).CrossRefGoogle Scholar
  96. 90.
    H. Rörtgen, Thesis, Aachen Univ. (1971).Google Scholar
  97. 91.
    N. I. Ikornikova and A. A. Popova, Dokl. Akad. Nauk SSSR 106, 460 (1956).Google Scholar
  98. 92.
    J. A. Adamski, J. Appl. Phys. 36, 1784 (1965).ADSCrossRefGoogle Scholar
  99. 93.
    R. A. Lefever and G. W. Clark, Rev. Sci. Instrum. 33, 769 (1962).ADSCrossRefGoogle Scholar
  100. 94.
    Ch. H. Moore, Trans. Am. Inst. Mining Met. Eng. 184, 194 (1949).Google Scholar
  101. 95.
    J. Ricard, Produits Chimiques Usine Kuhlmann—D’partement Rubis Synthètique des Alpes, Jarrie/Isère, France.Google Scholar
  102. 96.
    N. A. Velikhova, Kristallografiya 8, 804 (1963).Google Scholar
  103. 97.
    K.-Th. Wilke, Kristallzüchtung, VEB Deutscher Verlag der Wissenschaften, Berlin (1973).Google Scholar
  104. 98.
    O. Lauer, Feinheitsmessungen an technischem Stäuben, Alpine AG, Augsburg (1963).Google Scholar
  105. 99.
    See, e.g., Physik der Adhäsion, Int. Colloq. Chem. Ing. Technol. 41, 1276 (1969).CrossRefGoogle Scholar
  106. 100.
    H. Rumpf, Pharm. Ind. 34, 270 (1972).Google Scholar
  107. 101.
    R. Müller, H. Quart, and R. Warm, Krist. Techn. 5, 589 (1970).CrossRefGoogle Scholar
  108. 102.
    R. K. Verma, G. N. Sirkar, and S. Chatterjee, Sci. Ind. Res. 13A, 516 (1954).Google Scholar
  109. 103.
    M. Kestigian, Rev. Sci. Instrum. 33, 1293 (1962).ADSCrossRefGoogle Scholar
  110. 104.
    R. E. Carter, Rev. Sci. Instrum. 34, 588 (1963).ADSCrossRefGoogle Scholar
  111. 105.
    J. A. Adamski, Rev. Sci. Instrum. 40, 1634 (1969).ADSCrossRefGoogle Scholar
  112. 106.
    J. L. Sampson, Rev. Sci. Instrum. 42, 278 (1971).ADSCrossRefGoogle Scholar
  113. 107.
    R. Falckenberg, Krist. Techn., to be published.Google Scholar
  114. 108.
    J. L. Bazhenova, E. B. Zeligman, and S. N. Shorin, Izv. Akad. Nauk SSSR, Neorg. Mater. 8, 869 (1972).Google Scholar
  115. 109.
    A. A. Popova, Rost. Kristallov. 4168 (1965).Google Scholar
  116. 110.
    O. N. Boksa, S. V. Grum-Grzymailo, A. A. Popova, and E. F. Smirnova, Kristallografiya 13, 725 (1968).Google Scholar
  117. 111.
    A. A. Popova and W. B. Sotkina, Dokl. Akad. Nauk SSSR 169, 92 (1966).Google Scholar
  118. 112.
    A. A. Popova, Sov. Phys.—Crystallogr. 2, 111 (1958).Google Scholar
  119. 113.
    R. C. Pastor, H. Kimura, L. Podoksik, and M. A. Pearson, J. Chem. Phys. 43, 3948 (1965).ADSCrossRefGoogle Scholar
  120. 114.
    R. C. Pastor, A. C. Pastor, H. Kimura, and K. Avita, J. Chem. Phys. 44, 4486 (1966).ADSCrossRefGoogle Scholar
  121. 115.
    F. K. Volynec and N. A. Cvetkova, Neorg. Mater. 6, 271 (1970).Google Scholar
  122. 116.
    V. G. Sil’nichenko and M. M. Gritsenko, Sov. Phys.—Crystallogr. 9647 (1965).Google Scholar
  123. 117.
    R. H. Hoskins and B. H. Soffer, Phys. Rev. 133A, 490 (1964).ADSCrossRefGoogle Scholar
  124. 118.
    A. Kelley and R. B. Nicholson, eds., Strengthening Methods in Crystals, Wiley, New York (1971).Google Scholar
  125. 119.
    R. Müller, Krist. Techn. 5, K29 (1970).CrossRefGoogle Scholar
  126. 120.
    J. Kvapil, J. Sulocky, and J. Kvapil, Krist. Techn. 7, 1169 (1972).CrossRefGoogle Scholar
  127. 121.
    D. V. Sandreyev, P. A. Arsenyev, Z. G. Mareyeva, A. A. Mayer, R. M. Tolchinsky, and V. L. Farschtendiker, Krist. Techn. 8, 957 (1973).CrossRefGoogle Scholar
  128. 122.
    M. L. Kronberg, Science 122, 599 (1955).ADSCrossRefGoogle Scholar
  129. 123.
    M. L. Kronberg, Acta Met. 5, 507 (1957).CrossRefGoogle Scholar
  130. 124.
    J. G. Grabmaier and R. Falckenberg, J. Am. Ceram. Soc. 52, 648 (1969).CrossRefGoogle Scholar
  131. 125.
    G. K. Bansal and A. H. Heuer, Fracture Mechanics of Ceramics, Vol. 2, R. C. Bradt, D. P. Hasselman, and F. F. Lange (eds.), Plenum Press, New York (1974).Google Scholar
  132. 126.
    R. Falckenberg, Materials Res. Bull. 8, 171 (1973).CrossRefGoogle Scholar
  133. 127.
    R. W. Cahn, Physical Metallurgy, North-Holland Publ., Amsterdam (1965).Google Scholar
  134. 128.
    A. Smakula, Einkristalle, Springer-Verlag, Berlin-Göttingen-Heidelberg-München (1962).CrossRefGoogle Scholar
  135. 129.
    F. W. Harrison, Res. Appl. Ind. 12, 395 (1959).Google Scholar
  136. 130.
    J. C. Brice, The Growth of Crystals from Liquids, North-Holland Publ., Amsterdam (1973).Google Scholar
  137. 131.
    A. Neuhaus and W. Richartz, Ber. DKG 35, 108 (1958).Google Scholar
  138. 132.
    W. H. Bauer, J. Gordon, and C. H. Moore, J. Am. Ceram. Soc. 33, 140 (1950).CrossRefGoogle Scholar
  139. 133.
    W. H. Bauer, I. Gordon, and C. H. Moore, Am. Mineralogist 35, 128 (1950).Google Scholar
  140. 134.
    C. Barta and R. Barta, Zh. Prikl. Khim. Leningrad 29, 341 (1956).Google Scholar
  141. 135.
    A. M. Lejus and J.-P. Connan, Rev. Int. Htes Temp. Refract. 11215 (1974).Google Scholar
  142. 136.
    A. M. Lejus, J.-C. Bernier, and R. Collongues, Rev. Int. Htes Temp. Refract. 11183 (1974).Google Scholar
  143. 137.
    W. H. Bauer and J. Gordon, J. Am. Ceram. Soc. 34, 250 (1951).CrossRefGoogle Scholar
  144. 138.
    I. A. Bondar’, A. A. Popova, M. M. Piriotko, and N. A. Toropov, Dokl. Akad. Nauk SSSR 175, 1051 (1967).Google Scholar
  145. 139.
    H. Saalfeld, Z. Kristallogr. 133396 (1971).CrossRefGoogle Scholar
  146. 140.
    H. Saalfeld, Am. Mineralogist 60, 824 (1975).Google Scholar
  147. 141.
    A. A. Popova, Growth of Crystals, Vol. 4, A. V. Shubnikov and N. N. Sheftal (eds.), Consultants Bureau, New York (1966), p. 120.Google Scholar
  148. 142.
    W. S. Brower and E. N. Farabaugh, J. Appl. Phys. 36, 1489 (1965).ADSCrossRefGoogle Scholar
  149. 143.
    R. A. Lefever and J. Matsko, Materials Res. Bull. 10, 281 (1975).CrossRefGoogle Scholar
  150. 144.
    R. A. Lefever and G. W. Clark, Rev. Sci. Instrum. 33, 769 (1962).ADSCrossRefGoogle Scholar
  151. 145.
    R. Dittman and D. Petzelt, J. Crystal Growth 23, 77 (1974).ADSCrossRefGoogle Scholar
  152. 146.
    R. A. Lefever, Rev. Sci. Instrum. 33, 1470 (1962).ADSCrossRefGoogle Scholar
  153. 147.
    A. A. Popova, Sov. Phys.—Crystallogr. 151060 (1971).Google Scholar
  154. 148.
    M. Kestigian, Nature 197, 1006 (1963).ADSCrossRefGoogle Scholar
  155. 149.
    K. A. Wickersheim and R. A. Lefever, J. Opt. Soc. Am. 50, 831 (1960).CrossRefGoogle Scholar
  156. 150.
    R. H. Arlett, J. Am. Ceram. Soc. 45, 523 (1962).CrossRefGoogle Scholar
  157. 151.
    W. Fr. Eppler, Z. Angew. Mineral. 4, 345 (1943).Google Scholar
  158. 152.
    K. Nakano, H. Tabata, H. Okuda, and N. Kogyo, Gijutsu Shikensho Hokoku 17, 197 (1968).Google Scholar
  159. 153.
    C. C. Wang, J. Appl. Phys. 40, 3433 (1969).ADSCrossRefGoogle Scholar
  160. 154.
    M. Yamamoto, S. Avino, and T. Sato, Sci. Rep. Res. Inst. Tohoku Univ. 22, 156 (1971).Google Scholar
  161. 155.
    D. Haberland, Mber. Dtsch. Akad. Wiss. Berlin 4, 376 (1962).Google Scholar
  162. 156.
    F. A. Reiss, Appl Optics 5, 1902 (1966).ADSCrossRefGoogle Scholar
  163. 157.
    J. Kvapil, Krist. Techn. 5, 551 (1970)CrossRefGoogle Scholar
  164. 158.
    J. Grabmaier and C. Zaminer, Z Angew. Phys. 17, 26 (1964).Google Scholar
  165. 159.
    J. Ricard and A. Cioccolani, J. Crystal Growth 13/14, 718 (1972).ADSCrossRefGoogle Scholar
  166. 160.
    C. Barta, Rost Kristallov 6, 181 (1965).Google Scholar
  167. 161.
    G. W. Dueker, C. M. Kellington, M. Katsmann, and J. G. Atwood, Appl. Optics 4, 110 (1965).ADSCrossRefGoogle Scholar
  168. 162.
    S. Sh. Gendelev, Sov. Phys.—Crystallogr. 8731 (1964).Google Scholar
  169. 163.
    J. Kvapil and J. Sulovsky, Krist. Techn. 6, 769 (1971).CrossRefGoogle Scholar
  170. 164.
    J. Kvapil, B. Pernev, J. Kvapil, and J. Sulovsky, Czech. J. Phys. B 24, 389 (1974).ADSCrossRefGoogle Scholar
  171. 165.
    E. R. Dobrovinskaya and L. A. Litvinov, Krist. Techn. 6, K33 (1971).CrossRefGoogle Scholar
  172. 166.
    M. O. Kliya, J. Crystal Growth 3/4, 719 (1968).ADSCrossRefGoogle Scholar
  173. 167.
    D. L. Stephens and W. J. Alford, J. Am. Ceram. Soc. 47, 81 (1964).CrossRefGoogle Scholar
  174. 168.
    H. Palmour III, J. J. DuPlessis, and K. Wurth Kriegel, J. Am. Ceram. Soc. 44, 400 (1961).CrossRefGoogle Scholar
  175. 169.
    J. Grabmaier and Chr. Watson, Z. Angew. Phys. 24, 108 (1968).Google Scholar
  176. 170.
    C. Barta, F. Petru, and B. Hajek, Naturwiss. 4536 (1958).ADSCrossRefGoogle Scholar
  177. 171.
    R. H. Gilette, Rev. Sci. Instrum. 21, 294 (1950).ADSCrossRefGoogle Scholar
  178. 172.
    E. J. Scott, J. Chem. Phys. 23, 2459 (1955).ADSCrossRefGoogle Scholar
  179. 173.
    A. A. Popova, Sov. Phys.—Crystallogr. 2711 (1958).Google Scholar
  180. 174.
    T. Nakamichi, T. Sato, and Y. Nagayama, J. Japan. Inst. Met. 40, 366 (1976).Google Scholar
  181. 175.
    J. G. Bednorz and H. J. Scheel, J. Crystal Growth, 415 (1977).ADSCrossRefGoogle Scholar
  182. 176.
    P. Y. Kikin, Kristallografiya 20, 673 (1975).Google Scholar
  183. 177.
    K. Dräger and H.-J. Studt, J. Crystal Growth 37, 151 (1977).ADSCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1978

Authors and Affiliations

  • R. Falckenberg
    • 1
  1. 1.Siemens Research LaboratoriesMunichWest Germany

Personalised recommendations