Advertisement

Mechanisms of Regulating the Respiratory Burst in Leukocytes

  • Linda C. McPhail
  • Ralph Snyderman
Part of the Contemporary Topics in Immunobiology book series (CTI, volume 14)

Abstract

When leukocytes encounter opsonized microorganisms or a variety of inflammatory stimuli, their utilization of oxygen is substantially enhanced. This phenomenon was first observed as increased oxygen uptake by the stimulated cells (Baldridge and Gerard, 1933; Sbarra and Karnovsky, 1959) and was correlated with the production of hydrogen peroxide (Iyer et al., 1961). Concomitant with the alterations in respiration, enhanced glucose oxidation via the hexose monophosphate shunt occurs as well (Sbarra and Karnovsky, 1959). In recent years, it has become clear that oxygen utilization in activated phagocytic cells can proceed by one electron reduction steps, and that the initial product is probably superoxide anion ( 2 - ) (Babior et al., 1973). Two molecules of 2 - can then interact in a dismutation reaction, resulting in the formation of hydrogen peroxide (H2O2). These reactions are outlined in Eqs. (1) and (2):
$$ {O_2} + {e^ - } \to O_2^ - $$
(1)
$$ 2O_{_2}^ - + 2{H^ + } \to O_2^ - + {H_2}{O_2} $$
(2)

Keywords

NADPH Oxidase Human Neutrophil Particulate Fraction Phorbol Myristate Acetate Polymorphonuclear Leukocyte 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agner, K., 1972, Biological effects of hypochlorous acid formed by “MPO” peroxidation in the presence of chloride ions, in: Structure and Function of Oxidation-Reduction Enzymes (A. Akeson and A. Ehrenberg, eds.), Vol. 18, pp. 329–335, Pergamon Press, New York.Google Scholar
  2. Allen, R. C., Sternholm, R. L., and Steele, R. J., 1972, Evidence for the generation of an electronic excitation state(s) in human polymorphonuclear leukocytes and its participation in bactericidal activity, Biochem. Biophys. Res. Commun. 47:679.PubMedCrossRefGoogle Scholar
  3. Alobaidi, T., Naccache, P. H., and Sha’afi, R. I., 1981, Calmodulin antagonists modulate rabbit neutrophil degranulation, aggregation and stimulated oxygen consumption, Biochim. Biophys. Acta 675:316.PubMedCrossRefGoogle Scholar
  4. Ambruso, D. R., and Johnston, R. B., Jr., 1981, Lactoferrin enhances hydroxyl radical production by human neutrophils, neutrophil particulate fractions and an enzymatic generating system, J. Clin. Invest. 67:352.PubMedCrossRefGoogle Scholar
  5. Ambruso, D. R., Altenburger, K. M., and Johnston, R. B., Jr., 1979, Defective oxidative metabolism in newborn neutrophils: Discrepancy between superoxide anion and hydroxyl radical generation, Pediatrics 64:722.PubMedGoogle Scholar
  6. Ambruso, D. R., Bentwood, B., Henson, P. M., and Johnston, R. B., Jr., 1982a, Decreased hydroxyl radical generation and lactoferrin content in cord blood neutrophils, Pediatr. Res. 16:198A. (Abstr.)Google Scholar
  7. Ambruso, D. R., Sasada, M., Nishiyama, H., Kubo, A., Komiyama, A., and Allen, R. H., 1982b, Studies of neutrophil function in a patient with specific granule deficiency, Clin. Res. 30:309A. (Abstr.)Google Scholar
  8. Andrews, P. C., and Babior, B. M., 1983, Endogenous protein phosphorylation by resting and activated human neutrophils, Blood 61:333.PubMedGoogle Scholar
  9. Babior, B. M., 1978, Oxygen-dependent microbial killing by phagocytes, N. Engl. J. Med. 298:659,721.PubMedCrossRefGoogle Scholar
  10. Babior, B. M., and Kipnes, R. S., 1977, Superoxide-forming enzyme from human neutrophils: Evidence for a flavin requirement, Blood 50:517.PubMedGoogle Scholar
  11. Babior, B. M., and Peters, W. A., 1981, The (math)-producing enzyme of human neutrophil. Further properties, J. Biol. Chem. 256:2321.PubMedGoogle Scholar
  12. Babior, B. M., Kipnes, R. S., and Curnutte, J. T., 1973, Biological defense mechanisms. The production by leukocytes of superoxide, a potential bactericidal agent, J. Clin. Invest. 52:741.PubMedCrossRefGoogle Scholar
  13. Babior, B. M., Curnutte, J. T., and Kipnes, R. S., 1975, Biological defense mechanisms. Evidence for the participation of superoxide in bacterial killing by xanthine oxidase, J. Lab. Clin. Med. 85:235.PubMedGoogle Scholar
  14. Babior, B. M., Curnutte, J. T., and McMurrich, B. J., 1976, The particulate superoxide-forming system from human neutrophils. Properties of the system and further evidence supporting its participation in the respiratory burst, J. Clin. Invest. 58:989.PubMedCrossRefGoogle Scholar
  15. Badwey, J. A., and Karnovsky, M. L., 1979, Production of superoxide and hydrogen peroxide by an NADH oxidase in guinea pig polymorphonuclear leukocytes. Modulation by nucleotides and divalent cations, J. Biol. Chem. 254:11530.PubMedGoogle Scholar
  16. Badwey, J. A., Curnutte, J. T., Robinson, J. M., Lazdins, J. K., Briggs, R. T., Karnovsky, M. J., and Karnovsky, M. L., 1980, Comparative aspects of oxidative metabolism of neutrophils from human blood and guinea pig peritonea: Magnitude of the respiratory burst, dependence upon stimulating agents, and localization of the oxidases, J. Cell. Physiol. 105:541.PubMedCrossRefGoogle Scholar
  17. Badwey, J. A., Curnutte, J. T., Karnovsky, M. L., 1981, cis-Polyunsaturated fatty acids induce high levels of superoxide production by human neutrophils, J. Biol. Chem. 256:12640.PubMedGoogle Scholar
  18. Badwey, J. A., Curnutte, J. T., Berde, C. B., and Karnovsky, M. L., 1982, Cytochalasin E diminishes the lag phase in the release of superoxide by human neutrophils, Biochem. Biophys. Res. Commun. 106:170.PubMedCrossRefGoogle Scholar
  19. Baehner, R. L., and Karnovsky, M. L., 1968, Deficiency of reduced nicotinamide adenine dinucleotide oxidase in chronic granulomatous disease, Science 162:1277.PubMedCrossRefGoogle Scholar
  20. Baehner, R. L., Karnovsky, M. J., and Karnovsky, M. L., 1969, Degranulation of leukocytes in chronic granulomatous disease, J. Clin. Invest. 48:187.PubMedCrossRefGoogle Scholar
  21. Baldridge, C. W., and Gerard, R. W., 1933, The extra respiration of phagocytosis, Am. J. Physiol. 103:235.Google Scholar
  22. Barthelemy, A., Paridaens, R., and Schell-Frederick, E., 1977, Phagocytosis-induced 45calcium efflux in polymorphonuclear leukocytes, FEBS Lett. 82:283.PubMedCrossRefGoogle Scholar
  23. Bender, J. G., McPhail, L. C., and Van Epps, D. E., 1983, Exposure of human neutrophils to chemotactic factors potentiates activation of the respiratory burst enzyme, J. Immunol. 130:2316.PubMedGoogle Scholar
  24. Berendes, H., Bridges, R. A., and Good, R. A., 1957, A fatal granulomatosus of childhood, Minn. Med. 40:309.PubMedGoogle Scholar
  25. Borgeat, P., and Samuelsson, B., 1979, Arachidonic acid metabolism in polymorphonuclear leukocytes: Effects of ionophore A231S7, Proc. Natl. Acad. Sci. (USA) 76:2148.CrossRefGoogle Scholar
  26. Borregaard, N., Staehr-Johansen, K., Taudorff, E., and Wandall, J. H., 1979, Cytochrome b is present in neutrophils from patients with chronic granulomatous disease, Lancet 1:949.PubMedCrossRefGoogle Scholar
  27. Borregaard, N., Simons, E. R., and Clark, R. A., 1982, Involvement of cytochrome b-245 in the respiratory burst of human neutrophils, Infect. Immun. 38:1301.PubMedGoogle Scholar
  28. Borregaard, N., Heiple, J. M., Simons, E. R., and Clark, R. A., 1983, Subcellular localization of the b-cytochrome component of the microbicidal oxidase: Translocation during activation, J. Cell. Biol. 97:52.PubMedCrossRefGoogle Scholar
  29. Boxer, L. A., Yoder, M., Bonsib, S., Schmidt, M., Ho, P., Jersild, R., and Baehner, R. L., 1979, Effects of a chemotactic factor, N-formyl-methionyl peptide on adherence, superoxide anion generation, phagocytosis, and microtubule assembly of human polymorphonuclear leukocytes, J. Lab. Clin. Med. 93:583.Google Scholar
  30. Boxer, L. A., Coates, T. D., Haak, R. A., Wolach, J., Hoffstein, S., and Baehner, R. L., 1982, Lactoferrin deficiency associated with altered granulocyte function, N. Engl. J. Med. 307:404.PubMedCrossRefGoogle Scholar
  31. Breton-Gorius, J., Mason, D. Y., Buriot, D., Vilde, J. L., and Griscelli, C., 1980, Lactoferrin deficiency as a consequence of a lack of specific granules in neutrophils from a patient with recurrent infections: Detection by immunoperoxidase staining for lactoferrin and cytochemical electron microscopy, Am. J. Pathol. 99:413.PubMedGoogle Scholar
  32. Briggs, R. T., Karnovsky, M. L., and Karnovsky, M. J., 1977, Hydrogen peroxide production in chronic granulomatous disease. A cytochemical study of reduced pyridine nucleotide oxidases, J. Clin. Invest. 59:1088.PubMedCrossRefGoogle Scholar
  33. Castagna, M., Takai, Y., Kaibuchi, K., Sano, K., Kikkawa, U., and Nishizuka, Y., 1982, Direct activation of calcium-activated, phospholipid-dependent protein kinase by tumor-promoting phorbol esters, J. Biol. Chem. 257:7847.PubMedGoogle Scholar
  34. Chafouleas, J. G., Dedman, J. R., Munjaal, R. P., and Means, A. R., 1979, Calmodulin. Development and application of a sensitive radioimmunoassay, J. Biol. Chem. 254:10262.PubMedGoogle Scholar
  35. Chaudhry, A. N., Santinga, J. T., and Gabig, T. G., 1982, The subcellular particulate NADPH-dependent (math)-generating oxidase from human blood monocytes: Comparison to the neutrophil system, Blood 60:979.PubMedGoogle Scholar
  36. Cheung, W. Y., 1980, Calmodulin plays a pivotal role in cellular regulation, Science 207:19.PubMedCrossRefGoogle Scholar
  37. Cockcroft, S., Bennett, J. P., and Gomperts, B. D., 1980, Stimulus-secretion coupling in rabbit neutrophils is not mediated by phosphatidyl inositol breakdown, Nature 288:275.PubMedCrossRefGoogle Scholar
  38. Cohen, H. J., and Chovaniec, M. E., 1978, Superoxide production by digitonin-stimulated guinea pig granulocytes. The effects of N-ethyl maleimide, divalent cations, and glycolytic and mitochondrial inhibitors on the activation of the superoxide-generating system, J. Clin. Invest. 61:1088.PubMedCrossRefGoogle Scholar
  39. Cohen, H. J., Chovaniec, M. E., and Davies, W. A., 1980a, Activation of the guinea pig granulocyte NAD(P)H-dependent superoxide generating enzyme: Localization in a plasma membrane enriched particle and kinetics of activation, Blood 55:355.PubMedGoogle Scholar
  40. Cohen, H. J., Chovaniec, M. E., and Ellis, S. E., 19806, Chlorpromazine inhibition of granulocyte superoxide production, Blood 56:23.Google Scholar
  41. Cohen, H. J., Newburger, P. E., and Chovaniac, M. E., 1980c, NAD(P)H-dependent superoxide production by phagocytic vesicles from guinea pig and human granulocytes, J. Biol. Chem. 255:6584.PubMedGoogle Scholar
  42. Cox, J. P., and Karnovsky, M. L., 1973, The depression of phagocytosis by exogenous cyclic nucleotides, prostaglandins, and theophylline, J. Cell Biol. 59:480.PubMedCrossRefGoogle Scholar
  43. Cramer, E. B., and Gallin, J. I., 1979, Localization of submembranous cations to the leading end of human neutrophils during Chemotaxis, J. Cell. Biol. 82:369.PubMedCrossRefGoogle Scholar
  44. Crawford, D. R., and Schneider, D. L., 1982, Identification of ubiquinone-50 in human neutrophils and its role in microbicidal events, J. Biol. Chem. 257:6662.PubMedGoogle Scholar
  45. Cross, A. R., Higson, F. K., Jones, O. T. G., Harper, A.M., and Segal, A.W., 1982, The enzymic reduction and kinetics of oxidation of cytochrome b-245 of neutrophils, Biochem.J. 204:479.PubMedGoogle Scholar
  46. Cunningham, C. C., DeChatelet, L. R., Spach, P. L, Parce, W., Thomas, M. J., Lees, C. J., and Shirley, P. S., 1982, Identification and quantitation of electron-transport components in human polymorphonuclear neutrophils, Biochim. Biophys. Acta 682:430.PubMedCrossRefGoogle Scholar
  47. Curnutte, J. T., Kipnes, R. A., and Babior, B. M., 1975, Defect in pyridine nucleotide dependent superoxide production by a particulate fraction from the granulocytes of patients with chronic granulomatous disease, N. Engl. J. Med. 293:628.PubMedCrossRefGoogle Scholar
  48. Curnutte, J. T., Babior, B. M., and Karnovsky, M. L., 1979, Fluoride-mediated activation of the respiratory burst in human neutrophils. A reversible process, J. Clin. Invest. 63:637.PubMedCrossRefGoogle Scholar
  49. DeChatelet, L. R., 1978, Initiation of the respiratory burst in human polymorphonuclear neutrophils: A critical review, J. Reticuloendothel. Soc. 24:73.PubMedGoogle Scholar
  50. DeChatelet, L. R., McPhail, L. C., Mullikin, D., and McCall, C. E., 1975a, An isotopic assay for NADPH oxidase activity and some characteristics of the enzyme from human polymorphonuclear leukocytes, J. Clin. Invest. 55:714.PubMedCrossRefGoogle Scholar
  51. DeChatelet, L. R., Shirley, P. S., Goodson, P. R., and McCall, C.E., 1975b, Bactericidal activity of superoxide anion and of hydrogen peroxide: Investigations employing dialuric acid, a superoxide generating drug, Antimicrob. Agents Chemother. 8:146.PubMedCrossRefGoogle Scholar
  52. DeChatelet, L. R., Shirley, P. S., and Johnston, R. B., Jr., 1976a, Effect of phorbol myristate acetate on the oxidative metabolism of human polymorphonuclear leukocytes, Blood 47:545.PubMedGoogle Scholar
  53. DeChatelet, L. R., Shirley, P. S., and McPhail, L. C., 1976b, Normal leukocyte glutathione peroxidase activity in patients with chronic granulomatous disease, J. Pediatr. 89:598.PubMedCrossRefGoogle Scholar
  54. DeChatelet, L. R., Lees, C. J., and Shirley, P. S., 1982, Separation of superoxide generation from NADP formation in subcellular fractions from human neutrophils, Clin. Res. 30: 363A. (Abstr.)Google Scholar
  55. Della Bianca, V., Bellavite, P., De Togni, P., Fumarulo, K., and Rossi, F., 1983, Studies on stimulus-response coupling in human neutrophils. I. Role of monovalent cations in the respiratory and secretory response to N-formylmethionylleucylphenylalanine, Biochem. Biophys. Acta 755:497.CrossRefGoogle Scholar
  56. Dewald, B., Baggiolini, M., Curnutte, J. T., and Babior, B. M., 1979, Subcellular localization of the superoxide-forming enzyme in human neutrophils, J. Clin. Invest. 63:21.PubMedCrossRefGoogle Scholar
  57. Drath, D. B., and Karnovsky, M. L., 1974, Bactericidal activity of metal-mediated peroxide-ascorbate systems, Infect. Immun. 10:1077.PubMedGoogle Scholar
  58. English, D., Roloff, J. S., and Lukens, J. N., 1981, Chemotactic factor enhancement of superoxide release from fluoride and phorbol myristate acetate stimulated neutrophils, Blood 58:129.PubMedGoogle Scholar
  59. Fletcher, M. P., Seligmann, B. E., and Gallin, J. I., 1982, Correlation of human neutrophil secretion, chemoattractant receptor mobilization, and enhanced functional capacity, J. Immunol 128:941.PubMedGoogle Scholar
  60. Foote, C. S., Abakerli, R. B., Clough, R. L., and Shook, F. C., 1980, On the question of sinlet oxygen production in leukocytes, macrophages and the dismutation of superoxide anion, in: Biological and Clinical Aspects of Superoxide and Superoxide Dismutase (W. H. Bannister and J. V. Bannister, eds.), pp. 222–230, Elsevier-North Holland, New York.Google Scholar
  61. Foote, C. S., Goyne, T. E., and Lehrer, R. I., 1983, Assessment of chlorination by human neutrophils, Nature 301:715.PubMedCrossRefGoogle Scholar
  62. Gabig, T. G., 1983, The NADPH-dependent (math)-generating oxidase from human neutrophils. Identification of a flavoprotein component that is deficient in a patient with chronic granulomatous disease, J. Biol. Chem. 258:6352.PubMedGoogle Scholar
  63. Gabig, T. G., and Babior, B. M., 1979, The (math)-forming oxidase responsible for the respiratory burst in human neutrophils. Properties of the solubilized enzyme, J. Biol. Chem. 254:9070.PubMedGoogle Scholar
  64. Gabig, T. G., Kipnes, R. S., and Babior, B. M., 1978, Solubilization of the (math) forming activity responsible for the respiratory burst in human neutrophils, J. Biol. Chem. 253:6663.PubMedGoogle Scholar
  65. Gabig, T. G., Schervish, E. W., and Santinga, J. T., 1982, Functional relationship of the cytochrome b to the superoxide-generating oxidase of human neutrophils, J. Biol. Chem. 257:4114.PubMedGoogle Scholar
  66. Gallin, E. K., and Gallin, J. I., 1977, Interaction of chemotactic factors with human macrophages: Induction of transmembrane potential changes, J. Cell. Biol. 75:277.PubMedCrossRefGoogle Scholar
  67. Gallin, J. I., and Rosenthal, A. S., 1974, The regulatory role of divalent cations in human granulocyte Chemotaxis, J. Cell. Biol. 62:594.PubMedCrossRefGoogle Scholar
  68. Gallin, J. I., Fletcher, M. P., Seligmann, B. E., Hoffstein, S., Cehrs, K., and Mounessa, N., 1982, Human neutrophil specific granule deficiency: A model to assess the role of neutrophil specific granules in the evolution of the inflammatory process response, Blood 59:1317.PubMedGoogle Scholar
  69. Goetzl, E. J., and Sun, F. F., 1979, Generation of unique monohydroxy-eiscosatetraenoic acids from arachidonic acid by human neutrophils, J. Exp. Med. 150:406.PubMedCrossRefGoogle Scholar
  70. Goetzl, E. J., Woods, J. M., and Gorman, R. R., 1977, Stimulation of human eosinophil and neutrophil polymorphonuclear leukocyte Chemotaxis and random migration by 12-L-hydroxy-5,8,10,14-eicosatetraenoicacid, J. Clin. Invest. 59:179.PubMedCrossRefGoogle Scholar
  71. Goetzl, E. J., Brash, A. R., Tauber, A. I., Oates, J. A., and Hubbard, W. C., 1980, Modulation of human neutrophil function by monohydroxy-eicosatetraenoic acids, Immunology 39:491.PubMedGoogle Scholar
  72. Goldstein, I. M., Roos, D., Weissmann, G., and Kaplan, H. B., 1976, Influence of corticosteroids on human polymorphonuclear leukocyte function in vitro. Reduction of lysosomal enzyme release and superoxide production, Inflammation 1:305.CrossRefGoogle Scholar
  73. Goldstein, I. M., Cerqueira, M., Lind, S., and Kaplan, H. B., 1977, Evidence that the superoxide-generating system of human leukocytes is associated with the cell surface, J. Clin. Invest. 59:249.PubMedCrossRefGoogle Scholar
  74. Goldstein, I. M., Malmsten, C. L., Kindahl, H., Kaplan, H. B., Ridmark, O., Samuelsson, B., and Weissmann, G., 1978, Thromboxane generation by human peripheral blood polymorphonuclear leukocytes, J. Exp. Med. 148:787.PubMedCrossRefGoogle Scholar
  75. Haber, F., and Weiss, J., 1934, The catalytic decomposition of hydrogen peroxide by iron salts, Proc. R. Soc. Lond.(A) 147:332.CrossRefGoogle Scholar
  76. Harrison, J. E., and Schultz, J., 1976, Studies on the chlorinating activity of myeloperoxidase, J. Biol. Chem. 251:1371.PubMedGoogle Scholar
  77. Harvath, L., and Andersen, B. R., 1979, Defective initiation of oxidative metabolism in polymorphonuclear leukocytes, N. Engl. J. Med. 300:1130.PubMedCrossRefGoogle Scholar
  78. Hatch, G. E., Nichols, W. K., and Hill, H. R., 1977, Cyclic nucleotide changes in humanGoogle Scholar
  79. neutrophils induced by chemoattractants and chemoattractant modulators, J. Immunol. 119:450.Google Scholar
  80. Helfman, D.M., Appelbaum, B.D., Vogler, W. R., and Kuo, J. F., 1983, Phospholipid-sensitive Ca2+-dependent protein kinase and its substrates in human neutrophils, Bio-chem. Biophys. Res. Commun. 111:847.CrossRefGoogle Scholar
  81. Herlin, T., Petersen, C. S., and Esmann, V., 1978, The role of calcium and cyclic adenosine 3′,5′-monophosphate in the regulation of glycogen metabolism in phagocytosing human polymorphonuclear leukocytes, Biochim. Biophys. Acta 542:63.PubMedCrossRefGoogle Scholar
  82. Heyneman, R. A., and Bauwens-Monbaliu, D., 1981, Kinetics of nicotinamide adenine dinu-cleotides in oleate-stimulated polymorphonuclear leukocytes, FEBS Lett. 127:87.PubMedCrossRefGoogle Scholar
  83. Higgs, G. A., Bunting, S., Moncada, S., and Vane, J. R., 1976, Polymorphonuclear leukocytes produce thromboxane A2-like activity during phagocytosis, Prostaglandins 12:749.PubMedGoogle Scholar
  84. Hirata, F., Corcoran, B. A., Venkatasubramanian, K., Schiffmann, E., and Axelrod, J., 1979, Chemoattractants stimulate degradation of methylated phospholipids and release of arachidonic acid in rabbit leukocytes, Proc. Natl. Acad. Sci. (USA) 76:2640.CrossRefGoogle Scholar
  85. Hoffman, M., and Autor, A. P., 1980, Production of superoxide anion by an NADPH-oxidase from rat pulmonary macrophages, FEBS Lett. 121:352.PubMedCrossRefGoogle Scholar
  86. Hoffstein, S. T., 1979, Ultrastructural demonstration of calcium loss from local regions of the plasma membrane of surface-stimulated human granulocytes, J. Immunol. 123:1395.PubMedGoogle Scholar
  87. Hohn, D. C., and Lehrer, R. I., 1975, NADPH oxidase deficiency in X-linked chronic granulomatous disease, J. Clin. Invest. 55:707.PubMedCrossRefGoogle Scholar
  88. Holmes, B., and Good, R. A., 1972, Metabolic and functional abnormalities of human neutrophils, in: Phagocytic Mechanisms in Health and Disease (R. C. Williams, Jr., ed.), p. 51, Intercontinental Book Corp., New York.Google Scholar
  89. Holmes, B., Quie, P. G., Windhorst, D. B., and Good, R. A., 1966, Fatal granulomatous disease of childhood: An inborn abnormality of phagocytic function, Lancet 1:1225.PubMedCrossRefGoogle Scholar
  90. Holmes, B., Page, A. R., and Good, R. A., 1967, Studies of the metabolic activity of leukocytes from patients with a genetic abnormality of phagocytic function, J. Clin. Invest. 46:1422.PubMedCrossRefGoogle Scholar
  91. Holmes, B., Park, B. H., Malawista, S. E., Quie, P. G., Nelson, D. L., and Good, R. A., 1970, Chronic granulomatous disease in females. A deficiency of leukocyte glutathione peroxidase, N. Engl. J. Med. 283:217.PubMedCrossRefGoogle Scholar
  92. Huang, C. K., Hill, J. H., Jr., Mackin, W. M., Bormann, B. J., and Becker, E. L., 1983, Effects of chemotactic factors on the protein phosphorylation of rabbit peritoneal neutrophils, Fed. Proc. 42:1080. (Abstr.)Google Scholar
  93. Iverson, D., DeChatelet, L. R., Spitznagel, J. K., and Wang, P., 1977, Comparison of NADH and NADPH oxidase activities in granules isolated from human polymorphonuclear leukocytes with a fluorometric assay, J. Clin. Invest. 59:282.PubMedCrossRefGoogle Scholar
  94. Iverson, D. B., Wang-Iverson, P., Spitznagel, J. K., and DeChatelet, L. R., 1978, Subcellular localization of NAD(P)H oxidase(s) in human neutrophilic polymorphonuclear leukocytes, Biochem. J. 176:175.PubMedGoogle Scholar
  95. Iyer, G. Y. N., Islam, M. F., and Quastel, J. H., 1961, Biochemical aspects of phagocytosis, Nature 192:535.CrossRefGoogle Scholar
  96. Jandl, R. C., Andre-Schwartz, J., Borges-DuBois, L., Kipnes, R. S., McMurrich, B. J., and Babior, B. M., 1978, Termination of the respiratory burst in human neutrophils, J. Clin. Invest. 61:1176.PubMedCrossRefGoogle Scholar
  97. Johnston, R. B., Jr., 1982, Defects of neutrophil function, N. Engl. J. Med. 307:434.PubMedCrossRefGoogle Scholar
  98. Johnston, R. B., Jr., and Newman, S. L., 1977, Chronic granulomatous disease, Pediatr. Clin. North Am. 24:365.PubMedGoogle Scholar
  99. Johnston, R. B., Jr., Keele, B. B., Jr., Misra, H. P., Lehmeyer, J. E., Webb, L. S., Baehner, R. L., and Rajagopalan, K. V., 1975, The role of superoxide anion generation in phagocytic bactericidal activity. Studies with normal and chronic granulomatous disease leukocytes, J. Clin. Invest. 55:1357.PubMedCrossRefGoogle Scholar
  100. Jones, H. P., Ghai, G., Petrone, W. F., and McCord, J. M., 1982, Calmodulin-dependent stimulation of the NADPH oxidase of human neutrophils, Biochim. Biophys. Acta 714:152.PubMedCrossRefGoogle Scholar
  101. Kakinuma, K., and Minakami, S., 1978, Effects of fatty acids on superoxide radical generation in leukocytes, Biochim. Biophys. Acta 538:50.PubMedCrossRefGoogle Scholar
  102. Kaplan, E. L., Laxdal, T., and Quie, P. G., 1968, Studies of polymorphonuclear leukocytes from patients with chronic granulomatous disease of childhood: Bactericidal capacity for streptococci, Pediatrics 41:591.PubMedGoogle Scholar
  103. Kishimoto, A., Takai, Y., Mori, T., Kikkawa, U., and Nishizuka, Y., 1980, Activation of calcium and phospholipid-dependent protein kinase by diacylglycerol, its possible relationship to phosphatidyl inositol turnover, J. Biol. Chem. 255:2273.PubMedGoogle Scholar
  104. Kitagawa, S., and Takaku, F., 1981, Effect of the chemotactic peptide on the subsequent superoxide releasing response in human polymorphonuclear leukocytes, FEBS Lett. 128:5.PubMedCrossRefGoogle Scholar
  105. Kitagawa, S., Takaku, F., and Sakamoto, S., 1980, A comparison of the superoxide-releasing response in human polymorphonuclear leukocytes and monocytes, J. Immunol. 125: 359.PubMedGoogle Scholar
  106. Klebanoff, S. J., 1967, A peroxidase-mediated antimicrobial system in leukocytes, J. Clin. Invest. 46:1078.Google Scholar
  107. Klebanoff, S. J., 1970, Myeloperoxidase: Contribution to the microbicidal activity of intact leukocytes, Science 169:1095.PubMedCrossRefGoogle Scholar
  108. Klebanoff, S. J., 1974, Role of superoxide anion in the myeloperoxidase-mediated antimicrobial system, J. Biol. Chem. 249:3724.PubMedGoogle Scholar
  109. Klebanoff, S. J., 1975, Antimicrobial mechanisms in neutrophilic polymorphonuclear leukocytes, Semin. Hematol. 12:117.PubMedGoogle Scholar
  110. Klebanoff, S. J., 1980, Oxygen metabolism and the toxic properties of phagocytes, Ann. Intern. Med. 93:480.PubMedGoogle Scholar
  111. Klebanoff, S. J., and Pincus, S. H., 1971, Hydrogen peroxide utilization in myeloperoxi-dase-deficient leukocytes: A possible microbicidal control mechanism, J. Clin. Invest. 50:2226.PubMedCrossRefGoogle Scholar
  112. Komiyama, A., Morosawa, H., Nakahata, T., Miyagawa, Y., and Akabane, T., 1979, Abnormal neutrophil maturation in a neutrophil defect with morphologic abnormality and impaired function, J. Pediatr. 94:19.PubMedCrossRefGoogle Scholar
  113. Korchak, H. M., and Weissmann, G., 1978, Changes in membrane potential of human granulocytes antecede the metabolic responses to surface stimulation, Proc. Natl. Acad. Sci. (USA) 75:3818.CrossRefGoogle Scholar
  114. Korchak, H. M., and Weissmann, G., 1980, Stimulus-response coupling in the human neutrophil. Transmembrane potential and the role of extracellular Na+, Biochim. Biophys. Acta 601:180.PubMedCrossRefGoogle Scholar
  115. Kuo, J. F., Anderson, R. G. G., Wise, B. C., Mackerlova, L., Salomonsson, I., Brackett, N. L., Katoh, N., Shoji, M., and Wrenn, R. W., 1980, Calcium-dependent protein kinase: Widespread occurrence in various tissues and phyla of the animal kingdom and comparison of effects of phospholipid, calmodulin, and trifluoperazine, Proc. Natl. Acad. Sci. (USA) 77:7039.CrossRefGoogle Scholar
  116. Kuroki, M., Kamo, N., Kobatake, Y., Okimasu, E., Utsumi, K., 1982, Measurement of membrane potential in polymorphonuclear leukocytes and its changes during surface stimulation, Biochim. Biophys. Acta 693:326.PubMedCrossRefGoogle Scholar
  117. Landing, B. H., and Shirkey, H. S., 1957, A syndrome of recurrent infections and infiltration of viscera by pigmented lipid histiocytes, Pediatrics 20:431.PubMedGoogle Scholar
  118. Lehmeyer, J. E., and Johnston, R. B., Jr., 1978, Effect of anti-inflammatory drugs and agents that elevate intracellular cyclic AMP on the release of toxic oxygen metabolites: Studies in a model of tissue-bound IgG, Clin. Immunol. Immunopathol. 9:482.PubMedCrossRefGoogle Scholar
  119. Lehmeyer, J. E., Snyderman, R., and Johnston, R. B., Jr., 1979, Stimulation of neutrophil oxidative metabolism by chemotactic peptides: Influence of calcium ion concentration and cytochalasin B and comparison with stimulation by phorbol myristate acetate, Blood 54:35.PubMedGoogle Scholar
  120. Lehrer, R. I., and Cline, M. J., 1969, Leukocyte myeloperoxidase deficiency and disseminated candidiasis: The role of myeloperoxidase in resistance to Candida infection, J. Clin. Invest. 48:1478.PubMedCrossRefGoogle Scholar
  121. Lew, P. D., and Stossel, T. P., 1981, Effect of calcium on superoxide production by phagocytic vesicles from rabbit alveolar macrophages, J. Clin. Invest. 67:1.PubMedCrossRefGoogle Scholar
  122. Lew, P. D., Southwick, F. S., Stossel, T. P., Whitin, J. C., Simons, E., and Cohen, H. J., 1981, A variant of chronic granulomatous disease: Deficient oxidative metabolism due to a low-affinity NADPH oxidase, N. Engl. J. Med. 305:1329.PubMedCrossRefGoogle Scholar
  123. Light, D. R., Walsh, C., O’Callaghan, A. M., Goetzl, E. J., and Tauber, A. L., 1981, Characteristics of the cofactor requirements for the superoxide-generating NADPH oxidase of. human polymorphonuclear leukocytes, Biochemistry 20:1468.PubMedCrossRefGoogle Scholar
  124. Mandell, G. L., 1974, Bactericidal activity of aerobic and anaerobic polymorphonuclear neutrophils, Infect. Immun. 9:337.PubMedGoogle Scholar
  125. Mandell, G. L., and Hook, E. W., 1969, Leukocyte function in chronic granulomatous disease, Am. J. Med. 47:473.PubMedCrossRefGoogle Scholar
  126. Matsumoto, T., Takeshige, K., and Minakami, S., 1979, Inhibition of phagocytotic metabolic changes of leukocytes by an intracellular calcium-antagonist 8-(N,N-diethylamine)-octyl-3,4,5-trimethoxybenzoate, Biochem. Biophys. Res. Commun. 88:974.PubMedCrossRefGoogle Scholar
  127. May, C. D., Levine, B. B., and Weissmann, G., 1970, Effects of compounds which inhibit antigenic release of histamine and phagocytic release of lysosomal enzyme on glucose utilization by leukocytes in humans, Proc. Soc. Exp. Biol. Med. 133:758.PubMedGoogle Scholar
  128. McPhail, L. C., and Snyderman, R., 1983, Activation of the respiratory burst enzyme in human polymorphonuclear leukocytes by chemoattractants and other soluble stimuli. Evidence that the same oxidase is activated by different transductional mechanisms, J. Clin. Invest. 72:192.PubMedCrossRefGoogle Scholar
  129. McPhail, L. C., DeChatelet, L. R., and Shirley, P. S., 1976, Further characterization of NADPH oxidase activity of human polymorphonuclear leukocytes, J. Clin. Invest. 58:774.PubMedCrossRefGoogle Scholar
  130. McPhail, L. C., DeChatelet, L. R., Shirley, P. S., Wilfert, C., Johnston, R. B., Jr., and McCall, C. E., 1977, Deficiency of NADPH oxidase activity in chronic granulomatous disease, J. Pediatr. 90:213.PubMedCrossRefGoogle Scholar
  131. McPhail, L. C., DeChatelet, L. R., and Johnston, Jr., R. B., 1979, Generation of chemilumi-nescence by a particulate fraction isolated from human neutrophils. Analysis of molecular events, J. Clin. Invest. 63:648.PubMedCrossRefGoogle Scholar
  132. McPhail, L. C., Henson, P. M., and Johnston, R. B., Jr., 1981a, Respiratory burst enzyme in human neutrophils. Evidence for multiple mechanisms of activation, J. Clin. Invest. 67:710.PubMedCrossRefGoogle Scholar
  133. McPhail, L. C., Musson, R. A., and Johnston, R. B., Jr., 1981b, Superoxide generation by human monocytes and monocyte-derived macrophages: Characterization of a monocyte subcellular NADPH oxidase, Fed. Proc. 40:4987. (Abstr.)Google Scholar
  134. Millard, J. A., Gerard, K. W., and Schneider, D. L., 1979, The isolation from rat peritoneal leukocytes of plasma membrane enriched in alkaline phosphatase and a b-type cytochrome, Biochem. Biophys. Res. Commun. 90:321.CrossRefGoogle Scholar
  135. Mills, E. L., Thompson, T., Bjorksten, B., Filipovich, D., and Quie, P. G., 1979, The chemiluminescence response and bactericidal activity of polymorphonuclear neutrophils from newborns and their mothers, Pediatrics 63:429.PubMedGoogle Scholar
  136. Minakuchi, R., Takai, Y., Yu, B., and Nishizuka, Y., 1981, Widespread occurrence of calcium-activated, phospholipid-dependent protein kinase in mammalian tissues, J. Bio- chem. 89:1651.Google Scholar
  137. Molski, T. F. P., Naccache, P. H., Borgeat, P., and Sha’afi, R. I., 1981, Similarities in the mechanisms by which formyl-methionyl-leucyl-phenylalanine, arachidonic acid and leukotriene B4 increase calcium and sodium influxes in rabbit neutrophils, Biochem. Biophys. Res. Commun. 103:227.PubMedCrossRefGoogle Scholar
  138. Musson, R. A., McPhail, L. C., Shafran, H., and Johnston, R. B., Jr., 1982, Differences in the ability of human peripheral blood monocytes and in vitro monocyte-derived macrophages to produce superoxide anion, J. Reticuloendothel Soc. 31:261.PubMedGoogle Scholar
  139. Naccache, P. H., Showell, H. J., Becker, E. L., and Sha’afi, R. I., 1977, Transport of sodium, potassium, and calcium across rabbit polymorphonuclear leukocyte membranes. Effect of chemotactic factor, J. Cell. Biol. 73:428.PubMedCrossRefGoogle Scholar
  140. Naccache, P. H., Volpi, M., Showell, H. J., Becker, E. L., Sha’afi, R. I., 1979, Chemotactic factor-induced release of membrane calcium in rabbit neutrophils, Science 203:461.PubMedCrossRefGoogle Scholar
  141. Nakagawara, A., and Minakami, S., 1975, Generation of superoxide anions by leukocytes treated with cytochalasin E, Biochem. Biophys. Res. Commun. 64:760.PubMedCrossRefGoogle Scholar
  142. Nauseef, W. M., Metcalf, J. A., and Root, R. K., 1983, Role of myeloperoxidase in the respiratory burst of human neutrophils, Blood 61:483.PubMedGoogle Scholar
  143. Newburger, P. E., and Tauber, A. I., 1982, Heterogeneous pathways of oxidizing radical production in human neutrophils and the HL-60 cell line, Pediatr. Res. 16:856.PubMedCrossRefGoogle Scholar
  144. Niedel, J. E., Kuhn, L. J., and Vandenbark, G. R., 1983, Phorbol diester receptor copurifìes with protein kinase C,Proc. Natl. Acad. Sci. (USA) 80:36.CrossRefGoogle Scholar
  145. Ochs, D. L., and Reed, P. W., 1981, Inhibition of the neutrophil oxidative burst and degranulation by phenothiazines, Biochem. Biophys. Res. Commun. 102:958.PubMedCrossRefGoogle Scholar
  146. Pabst, M. J., and Johnston, R. B., Jr., 1980, Increased production of superoxide anion by macrophages exposed in vitro to muramyl dipeptide or lipopolysaccharide, J. Exp. Med. 151:101.PubMedCrossRefGoogle Scholar
  147. Patriarca, P., Cramer, R., Moncalvo, S., Rossi, F., and Romeo, D., 1971, Enzymatic basis of metabolic stimulation in leukocytes during phagocytosis: The role of activated NADPH oxidase, Arch. Biochem. Biophys. 145:255.PubMedCrossRefGoogle Scholar
  148. Patriarca, P., Cramer, R., Dri, P., Fant, L., Basford, R. E., and Rossi, F., 1973, NADPH oxidizing activity in rabbit polymorphonuclear leukocytes: Localization in azurophilic granules, Biochem. Biophys. Res. Commun. 53:830.PubMedCrossRefGoogle Scholar
  149. Pike, M. C., and Snyderman, R., 1981, Transmethylation reactions are required for initial morphologic and biochemical responses of human monocytes to chemoattractants, J. Immunol. 127:1444.PubMedGoogle Scholar
  150. Pryzwansky, K. B., Steiner, A. L., Spitznagel, J. K., and Kapoor, C. L., 1981, Compartmentalization of cyclic AMP during phagocytosis by human neutrophilic granulocytes, Science 211:407.PubMedCrossRefGoogle Scholar
  151. Qualliotine, D., DeChatelet, L. R., McCall, C. E., and Cooper, M. R., 1972, Stimulation of oxidative metabolism in polymorphonuclear leukocytes by catecholamines, J. Reticuloendothel. Soc. 11:263.PubMedGoogle Scholar
  152. Quie, P. G., White, J. G., Holmes, B., and Good, R. A., 1967, In vitro bactericidal capacity of human polymorphonuclear leukocytes: Diminished activity in chronic granulomatous disease of childhood, J. Clin. Invest. 46:668.PubMedCrossRefGoogle Scholar
  153. Repine, J. E., White, J. G., Clawson, C. C., Holmes, B. M., 1974, The influence of phorbol myristate acetate on oxygen consumption by polymorphonuclear leukocytes, J. Lab. Clin. Med. 83:911.PubMedGoogle Scholar
  154. Romeo, D., Zabucchi, G., Miani, M., and Rossi, F., 1975, Ion movement across leukocyte plasma membrane and excitation of their metabolism, Nature 253:542.PubMedCrossRefGoogle Scholar
  155. Rosen, H., and Klebanoff, S. J., 1976, Chemiluminescence and superoxide production by myeloperoxidase-deficient leukocytes, J. Clin. Invest. 58:50.PubMedCrossRefGoogle Scholar
  156. Rosen, H., and Klebanoff, S. J., 1979a, Bactericidal activity of a superoxide anion-generating system: A model for the polymorphonuclear leukocyte, J. Exp. Med. 149:27.PubMedCrossRefGoogle Scholar
  157. Rosen, H., and Klebanoff, S. J., 1979b, Hydroxyl radical generation by polymorphonuclear leukocytes measured by electron spin resonance spectroscopy, J. Clin. Invest. 64:1725.PubMedCrossRefGoogle Scholar
  158. Rossi, F., Patriarca, P., Berton, G., and De Nicola, G., 1980, Subcellular localization of the enzyme responsible for the respiratory burst in resting and phorbol myristate acetate activated leukocytes, in: Biological and Clinical Aspects of Superoxide and Superoxide Dismutase (W. H. Bannister and J. V. Bannister, eds.), pp. 193–200, Elsevier-North Holland, New York.Google Scholar
  159. Rossi, F., Della Bianca, V., and Bellavite, P., 1981, Inhibition of the respiratory burst and of phagocytosis by nordihydroguaiaretic acid in neutrophils, FEBS Lett. 127:183.PubMedCrossRefGoogle Scholar
  160. Sasada, M., Pabst, M. J., and Johnston, R. B., Jr., 1983, Activation of mouse peritoneal macrophages by lipopolysaccharide alters the kinetic parameters of the superoxide producing NADPH oxidase, J. Biol Chem. 258:9631.PubMedGoogle Scholar
  161. Sbarra, A. J., and Karnovsky, M. L., 1959, The biochemical basis of phagocytosis. I. Metabolic changes during the ingestion of particles by polymorphonuclear leukocytes, J. Biol. Chem. 234:1355.PubMedGoogle Scholar
  162. Schell-Frederick, E., 1974, Stimulation of the oxidative metabolism of polymorphonuclear leukocytes by the calcium ionophore A23187, FEBS Lett. 48:37.PubMedCrossRefGoogle Scholar
  163. Schneider, C., Zanetti, M., and Romeo, D., 1981, Surface-reactive stimuli selectively increase protein phosphorylation in human neutrophils, FEBS Lett. 127:4.PubMedCrossRefGoogle Scholar
  164. Segal, A. W., and Jones, O. T. G., 1980, Absence of cytochrome b reduction in stimulated neutrophils from both female and male patients with chronic granulomatous disease, FEBS Lett. 110:111.PubMedCrossRefGoogle Scholar
  165. Segal, A. W., and Peters, T. J., 1976, Characterization of the enzyme defect in chronic granulomatous disease, Lancet 1:1363.PubMedCrossRefGoogle Scholar
  166. Segel, A. W., Jones, O. T. G., Webster, D., and Allison, A. C., 1978, Absence of a newly described cytochrome b from patients with chronic granulomatous disease, Lancet 1:949.Google Scholar
  167. Segal, A. W., Cross, A. R., Garcia, R. C., Borregaard, N., Valerius, N. H., Soothill, J. F., and Jones, O. T. G., 1983, Absence of cytochrome b-245 in chronic granulomatous disease. A multicenter European evaluation of its incidence and relevance, N. Engl. J. Med. 308:245.PubMedCrossRefGoogle Scholar
  168. Seligmann, B. E., and Gallin, J. I., 1980, Use of lipophilic probes of membrane potential to assess human neutrophil activation. Abnormality in chronic granulomatous disease, J. Clin. Invest. 66:493.PubMedCrossRefGoogle Scholar
  169. Seligmann, B. E., Gallin, E. K., Martin, D. L., Shain, W., and Gallin, J. I., 1980, Interaction of chemotactic factors with human polymorphonuclear leukocytes: Studies using a membrane potential sensitive cyanine dye, J. Membr. Biol. 52:257.PubMedCrossRefGoogle Scholar
  170. Selvaraj, R. J., and Sbarra, A. J., 1966, Relationship of glycolytic and oxidative metabolism to particle entry and destruction in phagocytosing cells, Nature 211:1272.PubMedCrossRefGoogle Scholar
  171. Serhan, C., Anderson, P., Goodman, E., Dunham, P., and Weissmann, G., 1981,Phosphatidate and oxidized fatty acids are calcium ionophores. Studies employing arsenazo III in liposomes, J. Biol. Chem. 256:2736.PubMedGoogle Scholar
  172. Serhan, C. N., Fridovich, J., Goetzl, E. J., Dunham, P. B., and Weissmann, G., 1982a, Leukotriene B4 and phosphatidic acid are calcium ionophores. Studies employing arsenazo III in liposomes, J. Biol. Chem. 257:4746.PubMedGoogle Scholar
  173. Serhan, C. N., Radin, A., Smolen, J. E., Korchak, H., Samuelsson, B., and Weissmann, G., 1982b, Leukotriene B4 is a complete secretagogue in human neutrophils: A kinetic analysis, Biochem. Biophys. Res. Commun. 107:1006.PubMedCrossRefGoogle Scholar
  174. Serhan, C. N., Broekman, M. J., Korchak, H. M., Smolen, J. E., Marcus, A. J., and Weissmann, G., 1983, Changes in phosphatidylinositol and phosphatidic acid in stimulated human neutrophils. Relationship to calcium mobilization, aggregation and superoxide radical generation, Biochim. Biophys. Acta 762:420.PubMedCrossRefGoogle Scholar
  175. Shigeoka, A. O., Santos, J. I., and Hill, H. R., 1979, Functional analysis of neutrophil granulocytes from healthy, infected, and stressed neonates, J. Pediatr. 95:454.PubMedCrossRefGoogle Scholar
  176. Simchowitz, L., and Spilberg, I., 1979a, Generation of superoxide radicals by human peripheral neutrophils activated by chemotactic factor. Evidence for the role of calcium, J. Lab. Clin. Med. 93:583.PubMedGoogle Scholar
  177. Simchowitz, L., and Spilberg, I., 1979b, Chemotactic factor-induced generation of superoxide radicals by human neutrophils: Evidence for the role of sodium, J. Immunol. 123: 2428.PubMedGoogle Scholar
  178. Simchowitz, L., Mehta, J., and Spilberg, I., 1979, Chemotactic factor-induced generation of superoxide radicals by human neutrophils. Effect of metabolic inhibitors and antiinflammatory drugs, Arthritis Rheum. 22:755.PubMedCrossRefGoogle Scholar
  179. Simchowitz, L., Atkinson, J. P., and Spilberg, I., 1980a, Stimulus-specific deactivation of chemotactic factor-induced cyclic AMP response and superoxide generation by human neutrophils, J. Clin. Invest. 66:736.PubMedCrossRefGoogle Scholar
  180. Simchowitz, L., Fischbein, L. C., Spilberg, I., and Atkinson, J. P., 1980b, Induction of a transient elevation in intracellular levels of adenosine-3′,5′-cyclic monophosphate by chemotactic factors: An early event in human neutrophil activation, J. Immunol. 124: 1482.PubMedGoogle Scholar
  181. Sloan, E. P., Crawford, D. R., and Schneider, D. L., 1981, Isolation of plasma membrane from human neutrophils and determination of cytochrome b and quinone content, J. Exp. Med. 153:1316.PubMedCrossRefGoogle Scholar
  182. Smith, R. J., and Iden, S. S., 1981, Modulation of human neutrophil superoxide anion generation by the calcium antagonist 8-(N,N-diethylamino)-octyl-(3,4,5-trimethoxy) benzoate hydrochloride, J. Reticuloendothel. Soc. 29:215.PubMedGoogle Scholar
  183. Smith, R. J., and Ignarro, L. J., 1975, Bioregulation of lysosomal enzyme secretion from human neutrophils: Roles of guanosine 3′:5′-monophosphate and calcium in stimulus-secretion coupling, Proc. Natl. Acad. Sci. (USA) 72:108.CrossRefGoogle Scholar
  184. Smolen, J. E., and Weissmann, G., 1980, Effects of indomethacin, 5,8,11,14-eicosatetraynoic acid, and p-bromophenacyl bromide on lysosomal enzyme release and superoxide anion generation by human polymorphonuclear leukocytes, Biochem. Pharmacol. 29:533.PubMedCrossRefGoogle Scholar
  185. Smolen, J. E., and Weissmann, G., 1981, Stimuli which provoke secretion of azurophil enzymes from human neutrophils induce increments in adenosine cyclic 3′-5′-monophosphate, Biochim. Biophys. Acta 672:197.PubMedCrossRefGoogle Scholar
  186. Smolen, J. E., and Weissmann, G., 1982, The effect of various stimuli and calcium antagonists on the fluorescence response of chlorotetracycline-loaded human neutrophils, Biochim. Biophys. Acta 720:172.PubMedCrossRefGoogle Scholar
  187. Smolen, J. E., Korchak, H. M., and Weissmann, G., 1980, Increased levels of cyclic adenosine-3′,5′-monophosphate in human polymorphonuclear leukocytes after surface stimulation, J. Clin. Invest. 65:1077.PubMedCrossRefGoogle Scholar
  188. Smolen, J. E., Korchak, H. M., and Weissmann, G., 1981, The roles of extracellular and intracellular calcium in lysosomal enzyme release and superoxide anion generation by human neutrophils, Biochim. Biophys. Acta 677:512.PubMedCrossRefGoogle Scholar
  189. Stenson, W. F., and Parker, C. W., 1979, Metabolism of arachidonic acid in ionophore-stimulated neutrophils, J. Clin. Invest. 64:1457.PubMedCrossRefGoogle Scholar
  190. Stocker, R., and Richter, C., 1982, Involvement of calcium, calmodulin and phospholipase A in the alteration of membrane dynamics and superoxide production of human neutrophils stimulated by phorbol myristate acetate, FEBS Lett. 147:243.PubMedCrossRefGoogle Scholar
  191. Stossel, T. P., Root, R. K., and Vaughan, M., 1972, Phagocytosis in chronic granulomatous disease and the Chediak-Higashi syndrome, N. Engl. J. Med. 286:120.PubMedCrossRefGoogle Scholar
  192. Strauss, R. G., Bove, K. E., Jones, J. F., Mauer, A. M., and Fulginiti, V. A., 1974, An anomaly of neutrophil morphology with impaired function, N. Engl. J. Med. 290:478.PubMedCrossRefGoogle Scholar
  193. Suzuki, Y., and Lehrer, R. I., 1980, NAD(P)H oxidase activity in human neutrophils stimulated by phorbol myristate acetate, J. Clin. Invest. 66:1409.PubMedCrossRefGoogle Scholar
  194. Takai, Y., Kishimoto, A., Iwasa, Y., Kawahara, Y., Mori, T., and Nishizuka, Y., 1979, Calcium-dependent activation of a multifunctional protein kinase by membrane phospholipids, J. Biol. Chem. 254:3692.PubMedGoogle Scholar
  195. Takenawa, T., Homma, Y., and Nagai, Y., 1983, Role of Ca2+ in phosphatidylinositol response and arachidonic acid release in formylated tripeptide or Ca2+ ionophore A23187-stimulated guinea pig neutrophils, J. Immunol. 130:2849.PubMedGoogle Scholar
  196. Takeshige, K., and Minakami, S., 1981, Involvement of calmodulin in phagocytotic respiratory burst of leukocytes, Biochem. Biophys. Res. Commun. 99:484.PubMedCrossRefGoogle Scholar
  197. Takeshige, K., Nabi, Z. F., Tatscheck, B., and Minakami, S., 1980, Release of calcium from membranes and its relation to phagocytotic metabolic changes: A fluorescence study on leukocytes loaded with Chlortetracycline, Biochem. Biophys. Res. Commun. 95:410.PubMedCrossRefGoogle Scholar
  198. Tauber, A. I., and Babior, B. M., 1977, Evidence for hydroxyl radical production by human neutrophils, J. Clin. Invest. 60:374.PubMedCrossRefGoogle Scholar
  199. Tauber, A. I., and Goetzl, E. J., 1979, Structural and catalytic properties of the solubilized superoxide-generating activity of human polymorphonuclear leukocytes. Solubilization, stabilization in solution, and partial characterization, Biochemistry 18:5576.PubMedCrossRefGoogle Scholar
  200. Utsumi, K., Sugiyama, K., Miyahara, M., Naito, M., Awai, M., and Inoue, M., 1977, Effect of concanavalin A on membrane potential of polymorphonuclear leukocyte monitored by fluorescent dye, Cell Struct. Fune. 2:203.CrossRefGoogle Scholar
  201. Van Epps, D. E., and Garcia, M. L., 1980, Enhancement of neutrophil function as a result of prior exposure to chemo tactic factor, J. Clin. Invest. 66:167.PubMedCrossRefGoogle Scholar
  202. Walsh, C. E., Waite, B. M., Thomas, M. J., and DeChatelet, L. R., 1981, Release and metabolism of arachidonic acid in human neutrophils, J. Biol. Chem. 256:7228.PubMedGoogle Scholar
  203. Webster, R. O., Hong, S. R., Johnston, R. B., Jr., and Henson, P. M., 1980, Biological effects of the human complement fragments C5a and C5ades Arg on neutrophil function, Immunopharmacology 2:201.PubMedCrossRefGoogle Scholar
  204. Weening, R. S., Roos, D., Weemaes, C. M. R., Homan-Muller, J. W. T., and van Schaik, M. L. T., 1976, Defective initiation of the metabolic stimulation in phagocytizing granulocytes: A new congenital defect, J. Lab. Clin. Med. 88:757.PubMedGoogle Scholar
  205. Weiss, S. J., King, G. W., and Lobuglio, A. F., 1977, Evidence for hydroxyl radical generation by human monocytes, J. Clin. Invest. 60:370.PubMedCrossRefGoogle Scholar
  206. Weiss, S. J., Klein, R., Slivka, A., and Wei, M., 1982, Chlorination of taurine by human neutrophils. Evidence for hypochlorous acid generation, J. Clin. Invest. 70:598.PubMedCrossRefGoogle Scholar
  207. Wentzell, B., and Epand, R. M., 1978, Stimulation of the release of prostaglandins from polymorphonuclear leukocytes by the calcium ionophore A23187, FEBS Lett. 86:255.PubMedCrossRefGoogle Scholar
  208. Whitin, J. C., Chapman, C. E., Simons, E. R., Chovaniec, M. E., and Cohen, H. J., 1980, Correlation between membrane potential changes and superoxide production in human granulocytes stimulated by phorbol myristate acetate. Evidence for defective activation in chronic granulomatous disease, J. Biol. Chem. 255:1874.PubMedGoogle Scholar
  209. Wright, W. C., Jr., Ank, B. J., Herbert, J., and Stiehm, E. R., 1975, Decreased bactericidal activity of leukocytes of stressed newborn infants, Pediatrics 56:569.Google Scholar
  210. Yamaguchi, T., Sato, K., Dhimada, K., and Kakinuma, K., 1982, Subcellular localization of O2- generating enzyme in guinea pig polymorphonuclear leukocytes: Fractionation of subcellular particles by using a Percoll density gradient, J. Biochem. 91:31.PubMedGoogle Scholar
  211. Yuli, I., Tomonaga, A., and Snyderman, R., 1982, Chemoattractant receptor functions in human polymorphonuclear leukocytes are divergently altered by membrane fluidizers, Proc. Natl. Acad. Sci. (USA) 79:5906.CrossRefGoogle Scholar
  212. Zurier, R. B., and Sayadoff, D. M., 1975, Release of prostaglandins from human polymorphonuclear leukocytes, Inflammation 1:93.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 1984

Authors and Affiliations

  • Linda C. McPhail
    • 1
    • 2
  • Ralph Snyderman
    • 1
    • 2
  1. 1.Howard Hughes Medical Institute and Division of Rheumatic and Genetic DiseasesLaboratory of Immune Effector FunctionDurhamUSA
  2. 2.Department of MedicineDuke University Medical CenterDurhamUSA

Personalised recommendations